
2022/2023(2)
IF184504 Web Programming

Lecture #11b

ASP.NET: State Management

Misbakhul Munir IRFAN SUBAKTI
司馬伊凡

Мисбакхул Мунир Ирфан Субакти



Page & control’s instance: Gone when out

• Web programming traditional
• Every time a Web page posted to the server, an instance will be created

• It means all information about page & control on its page will be gone when 
we navigate out from a page to other page

• E.g., a user filling some text on the TextBox. When she/he navigate out to 
other page, this text will be gone

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 2



State Management: Categories

• Page State/ViewState
• Save a page’s information, e.g., the content of TextBox, CheckBox, etc.

• Session State
• Save a session user’s information for a particular time, e.g., a cart’s 

information from an online shopping, a user email’s information, etc.

• Application State
• Save an application’s information, i.e., all files whose *.aspx extension 

located in the same folder as a part of virtual directory

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 3



ViewState-Session-Application State: Diagram

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 4



ViewState-Session-App. State: Differences

• ViewState
• A web form’s ViewState is available only with in that web form
• Stored in a hidden field called _ViewState. Because of this, ViewState will be lost, if we 

navigate away from the page or if the browser is closed
• Used by all asp.net controls to retain their state across postback

• Session State
• Available across all pages, but only for a given single session. It’s like single-user global data.
• Stored on the web server
• Cleared when the user session times out. The default is 20 minutes. This is configurable in 
web.config

• Application State
• Available across all pages and across all sessions. It’s like multi-user global data
• Stored on the web server
• Cleared when the process hosting the application is restarted

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 5



ViewState-Session-App. State: Accessing

• ViewState
• Write: ViewState["counter"] = counterVal;

• Read: int counterVal = (int) ViewState["counter"];

• Session State
• Write: Session["cart"] = shoppingCart;

• Read: DataTable shoppingCart = (DataTable) Session["cart"];

• Application State
• Write: Application["database"] = databaseName;

• Read: string databaseName = (string) Application 

["databaseName"];

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 6



01HttpRequest.aspx

• Create a New 
Project: ASP.NET 
Web Forms Site
• Give a name to 

this new 
project, e.g., 
MyState

• 01HttpRequest

.aspx becomes 
our first Web 
Form file

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 7



01HttpRequest.aspx.cs

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 8



01HttpRequest (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 9



02HttpResponse.aspx

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 10



02HttpResponse.aspx.cs

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 11



02Welcome.aspx

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 12



02HttpResponse (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 13



Overcoming limitation: Features

• To overcome this inherent limitation of traditional Web programming, 
ASP.NET includes several options that help us preserve data on both a 
per-page basis and an application-wide basis. These features are as 
follows:
• View state
• Control state
• Hidden fields
• Cookies
• Query strings
• Application state
• Session state
• Profile Properties

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 14



Overcoming limitation: Features (continued)

• View state, control state, hidden fields, cookies, and query strings all 
involve storing data on the client in various ways.

• However, application state, session state, and profile properties all 
store data in memory on the server.

• Each option has distinct advantages and disadvantages, depending on 
the scenario.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 15



State Management: The option

• Client-based state management
• State management that involve storing information either in the page or on 

the client computer. For these options, no information is maintained on the 
server between round trips.

• Server-based state management
• ASP.NET offers us a variety of ways to maintain state information on the 

server, rather than persisting information on the client. With server-based 
state management, we can decrease the amount of information sent to the 
client in order to preserve state, however it can use costly resources on the 
server. The following sections describe three server-based state management 
features: application state, session state, and profile properties.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 16



Client-based state management: View State

• The ViewState property provides a dictionary object for retaining values 
between multiple requests for the same page. This is the default method 
that the page uses to preserve page and control property values between 
round trips.

• When the page is processed, the current state of the page and controls is 
hashed into a string and saved in the page as a hidden field, or multiple 
hidden fields if the amount of data stored in the ViewState property 
exceeds the specified value in the MaxPageStateFieldLength property. 
When the page is posted back to the server, the page parses the view-state 
string at page initialization and restores property information in the page.

• We can store values in view state as well.
ViewState["counter"] = counterVal;

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 17



View State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 18



ViewState: Disabling

• Machine Level – Disabling view state at machine level in machine.config, 
will disable ViewState of all the applications on the web server.

<Machine.config>

<system.web>

<pages enableViewState="false" />

</system.web>

</Machine.config>

• Application Level – We can disable ViewState for all pages in 
/web.config file.

<configuration>

<system.web>

<pages enableViewState="false" />

</system.web>

</configuration>

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 19



ViewState: Disabling (continued)

• Page Level - Disabling view state for a specific aspx file at the top.
<%@ Page Language="C#" .. EnableViewState="false" .. %>

• Control Level – We can disable ViewState for a specific control.
<asp:TextBox EnableViewState="false" ID="Name"

runat="server"></asp:TextBox>

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 20



03ViewState.aspx (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 21



03ViewState.aspx.cs (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 22



Control State

• Sometimes, we need to store control-state data in order for a control 
to work properly. For example, if we have written a custom control 
that has different tabs that show different information, in order for 
that control to work as expected, the control needs to know which 
tab is selected between round trips. The ViewState property can be 
used for this purpose, but view state can be turned off at a page level 
by developers, effectively breaking our control. To solve this, the 
ASP.NET page framework exposes a feature in ASP.NET called control 
state.

• The ControlState property allows us to persist property information 
that is specific to a control and cannot be turned off like the 
ViewState property.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 23



Control State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 24



Control State: Creating Custom Control

• We are going to 
create our own 
Custom Control
• Create a New 

project > 
Windows Forms 
Control Library 
(.NET Framework)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 25



MyCustomControl: The project

• Choose a project’s 
name for our new 
Windows Forms 
Control Library 
(.NET Framework)
• E.g., 

MyCustomControl

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 26



MyCustomControl: Adding User Control

• Right click on the 
MyCustomControl
on Solution Explorer 
> Add > New Item…
> User Control 
(Windows Forms)

• Choose a name
• E.g., 

MyCustomControl.cs

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 27



MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 28



MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 29



MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)

• Right click on 
MyCustomControl on 
Solution Explorer > 
Properties
• By default the output 

type: Class Library. So, let 
it be.

• Once we compile this 
project, we’ll have 
MyCustomControl.dll

in the folder 
MyCustomControl > bin
> Debug

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 30



MyState: Add MyCustomControl as a reference

• Open MyState project
• Right click on the MyState on Solution Explorer > Add > Reference… > 

Browse…

• Find and select MyCustomControl.dll

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 31



04ControlState.aspx (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 32



04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 33



04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 34

• Now for the first run, we will do the property setting and from next time 
onwards, we leaves it up to the control to render these things.

• Now the page still has EnableViewState property set to true. So if we run the 
page and do postback, we will observe the expected behaviour. Let's look at 
what user will see:



04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 35

• Now if the user disables the ViewState for the page or even for our custom 
control when a postback occurs:



04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 36

• The values are gone, the reason being our control depends on ViewState to 
function and we need to remove this dependency to ControlState so that even 
in this scenario, our control will continue to work.



MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)

• What we need to do here is, we have to override
the OnInit method and call the 
RegisterRequiresControlStatemethod 
during initialisation. Then we have to override the 
SaveControlState and LoadControlState
methods. So let us see how we do that for using 
ControlState for Text property of our control.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 37



04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 38

• Now we have the first property of our control using ControlState and the 
second one not using it. Now on postback, the output becomes:

• Look at the code to see the difference. The 
right way would be the way ControlState is 
being used for the first property, it should be 
used for all the controls inside a custom 
control.



Hidden Fields

• ASP.NET allows us to store information in a HiddenField control, which renders as a 
standard HTML hidden field. A hidden field does not render visibly in the browser, but we 
can set its properties just as we can with a standard control. When a page is submitted to 
the server, the content of a hidden field is sent in the HTTP form collection along with 
the values of other controls. A hidden field acts as a repository for any page-specific 
information that we want to store directly in the page.

• A HiddenField control stores a single variable in its Value property and must be 
explicitly added to the page. The following example shows a HiddenField control with 
an initial value.
<asp:hiddenfield id="ExampleHiddenField"

value="Example Value" 

runat="server"/>

• In order for hidden-field values to be available during page processing, we must submit 
the page using an HTTP POST command. If we use hidden fields and a page is processed 
in response to a link or an HTTP GET command, the hidden fields will not be available.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 39



Hidden Fields: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 40



05HiddenField.aspx (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 41



05HiddenField.aspx.cs (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 42



05HiddenField (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 43



05HiddenField: View page source

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 44



Cookies

• A cookie is a small amount of data that is stored either in a text file on 
the client file system or in-memory in the client browser session. It 
contains site-specific information that the server sends to the client 
along with page output. Cookies can be temporary (with specific 
expiration times and dates) or persistent.

• We can use cookies to store information about a particular client, 
session, or application. The cookies are saved on the client device, 
and when the browser requests a page, the client sends the 
information in the cookie along with the request information. The 
server can read the cookie and extract its value. A typical use is to 
store a token (perhaps encrypted) indicating that the user has already 
been authenticated in our application.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 45



Cookies: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 46



06Cookies.aspx (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 47



06Cookies.aspx.cs (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 48



06Cookies.aspx.cs (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 49



06Cookies (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 50



06Cookies.aspx.cs (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 51



06Cookies (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 52



Query Strings

• A query string is information that is appended to the end of a page URL. A typical query 
string might look like the following example:

https://www.contoso.com/listwidgets.aspx?category=basic&price=100

• In the URL path above, the query string starts with a question mark (?) and includes two 
attribute/value pairs, one called "category" and the other called "price."

• Query strings provide a simple but limited way to maintain state information. For 
example, they are an easy way to pass information from one page to another, such as 
passing a product number from one page to another page where it will be processed. 
However, some browsers and client devices impose a 2083-character limit on the length 
of the URL.

• In order for query string values to be available during page processing, we must submit 
the page using an HTTP GET command. That is, we cannot take advantage of a query 
string if a page is processed in response to an HTTP POST command.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 53



Query Strings: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 54



Server-based state mng’t: Application State

• ASP.NET allows us to save values using application state — which is an 
instance of the HttpApplicationState class — for each active Web 
application. Application state is a global storage mechanism that is 
accessible from all pages in the Web application. Thus, application state is 
useful for storing information that needs to be maintained between server 
round trips and between requests for pages.

• Application state is stored in a key/value dictionary that is created during 
each request to a specific URL. We can add our application-specific 
information to this structure to store it between page requests.

• Once we add our application-specific information to application state, the 
server manages it. 

• The following example shows how to assign a value in application state.
Application["WelcomeMessage"] = "Welcome to the Contoso site.";

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 55



Application State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 56



Session State

• ASP.NET allows us to save values by using session state — which is an instance of the HttpSessionState
class — for each active Web-application session.

• Session state is similar to application state, except that it is scoped to the current browser session. If 
different users are using our application, each user session will have a different session state. In addition, if a 
user leaves our application and then returns later, the second user session will have a different session state 
from the first.

• Session state is structured as a key/value dictionary for storing session-specific information that needs to be 
maintained between server round trips and between requests for pages.

• We can use session state to accomplish the following tasks:
• Uniquely identify browser or client-device requests and map them to an individual session instance on the server.

• Store session-specific data on the server for use across multiple browser or client-device requests within the same session.

• Raise appropriate session management events. In addition, we can write application code leveraging these events.

• Once we add our application-specific information to session state, the server manages this object. 
Depending on which options we specify, session information can be stored in cookies, on an out-of-process 
server, or on a computer running Microsoft SQL Server.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 57



Session State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 58



07Session.aspx (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 59



07Session.aspx.cs (Sachin Gargava@codeproject.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 60



07Session (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 61



07Session (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 62



07Session (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 63



07Session (Output)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 64



Profile Properties

• ASP.NET provides a feature called profile properties, which allows us to store user-specific data. 
This feature is similar to session state, except that the profile data is not lost when a user's session 
expires. The profile-properties feature uses an ASP.NET profile, which is stored in a persistent 
format and associated with an individual user. The ASP.NET profile allows us to easily manage user 
information without requiring us to create and maintain our own database. In addition, the 
profile makes the user information available using a strongly typed API that we can access from 
anywhere in our application. We can store objects of any type in the profile. The ASP.NET profile 
feature provides a generic storage system that allows us to define and maintain almost any kind 
of data while still making the data available in a type-safe manner.

• To use profile properties, we must configure a profile provider. ASP.NET includes a 
SqlProfileProvider class that allows us to store profile data in a SQL database, but we can 
also create our own profile provider class that stores profile data in a custom format and to a 
custom storage mechanism such as an XML file, or even to a web service.

• Because data that is placed in profile properties is not stored in application memory, it is 
preserved through Internet Information Services (IIS) restarts and worker-process restarts without 
losing data. Additionally, profile properties can be persisted across multiple processes such as in a 
Web farm or a Web garden.

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 65



Profile Properties: Pros & Cons (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 66



Profile Properties: Example (Nipun Tomar@c-sharpcorner.com)

24.05.2023 2022/2023(2) – Web Programming | MM Irfan Subakti 67


	Slide 1: 2022/2023(2) IF184504 Web Programming Lecture #11b ASP.NET: State Management
	Slide 2: Page & control’s instance: Gone when out
	Slide 3: State Management: Categories
	Slide 4: ViewState-Session-Application State: Diagram
	Slide 5: ViewState-Session-App. State: Differences
	Slide 6: ViewState-Session-App. State: Accessing
	Slide 7: 01HttpRequest.aspx
	Slide 8: 01HttpRequest.aspx.cs
	Slide 9: 01HttpRequest (Output)
	Slide 10: 02HttpResponse.aspx
	Slide 11: 02HttpResponse.aspx.cs
	Slide 12: 02Welcome.aspx
	Slide 13: 02HttpResponse (Output)
	Slide 14: Overcoming limitation: Features
	Slide 15: Overcoming limitation: Features (continued)
	Slide 16: State Management: The option
	Slide 17: Client-based state management: View State
	Slide 18: View State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 19: ViewState: Disabling
	Slide 20: ViewState: Disabling (continued)
	Slide 21: 03ViewState.aspx (Sachin Gargava@codeproject.com)
	Slide 22: 03ViewState.aspx.cs (Sachin Gargava@codeproject.com)
	Slide 23: Control State
	Slide 24: Control State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 25: Control State: Creating Custom Control
	Slide 26: MyCustomControl: The project
	Slide 27: MyCustomControl: Adding User Control
	Slide 28: MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)
	Slide 29: MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)
	Slide 30: MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)
	Slide 31: MyState: Add MyCustomControl as a reference
	Slide 32: 04ControlState.aspx (Rahul Rajat Singh@codeproject.com)
	Slide 33: 04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)
	Slide 34: 04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)
	Slide 35: 04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)
	Slide 36: 04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)
	Slide 37: MyCustomControl.cs (Rahul Rajat Singh@codeproject.com)
	Slide 38: 04ControlState.aspx.cs (Rahul Rajat Singh@codeproject.com)
	Slide 39: Hidden Fields
	Slide 40: Hidden Fields: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 41: 05HiddenField.aspx (Sachin Gargava@codeproject.com)
	Slide 42: 05HiddenField.aspx.cs (Sachin Gargava@codeproject.com)
	Slide 43: 05HiddenField (Output)
	Slide 44: 05HiddenField: View page source
	Slide 45: Cookies
	Slide 46: Cookies: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 47: 06Cookies.aspx (Sachin Gargava@codeproject.com)
	Slide 48: 06Cookies.aspx.cs (Sachin Gargava@codeproject.com)
	Slide 49: 06Cookies.aspx.cs (Sachin Gargava@codeproject.com)
	Slide 50: 06Cookies (Output)
	Slide 51: 06Cookies.aspx.cs (Sachin Gargava@codeproject.com)
	Slide 52: 06Cookies (Output)
	Slide 53: Query Strings
	Slide 54: Query Strings: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 55: Server-based state mng’t: Application State
	Slide 56: Application State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 57: Session State
	Slide 58: Session State: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 59: 07Session.aspx (Sachin Gargava@codeproject.com)
	Slide 60: 07Session.aspx.cs (Sachin Gargava@codeproject.com)
	Slide 61: 07Session (Output)
	Slide 62: 07Session (Output)
	Slide 63: 07Session (Output)
	Slide 64: 07Session (Output)
	Slide 65: Profile Properties
	Slide 66: Profile Properties: Pros & Cons (Nipun Tomar@c-sharpcorner.com)
	Slide 67: Profile Properties: Example (Nipun Tomar@c-sharpcorner.com)

