
2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 1

EF234302 Object-Oriented Programming (D)

Midterm Exam

Starting date: 18 October 2023
Deadline: 25 October 2023, 23:59 WIB. Penalty: 0.15% of grade/minute of

tardiness.
Exam type: Open, Individual Project
Send to:
 MM Irfan Subakti <yifana@gmail.com>
 CC to Michael Ariel Manihuruk <michaelariel8@gmail.com>,

Mashita Dewi <mashitaad@gmail.com> & Adam Haidar Azizi
<adamhadaizi2002@gmail.com> the subject:
EF234302_OOP(D)_MID_StudentID_Name

File type and format: A zip file containing the working file & the declaration
Filename format: EF234302_OOP(D)_MID_StudentID_Name.ZIP

Instruction
Please do these steps as in the following.

0. Download the working template file – and use it for your work, i.e.,

EF234302_OOP_MID_StudentID_Name.zip. There are two packages: tree and list.
No. 1-7 utilise package tree, likewise, a package list will be used for no. 8-15.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 2

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 3

No. 1-7. In the package tree, we have the following Java class, i.e., Tree.java, and you must
fill in more methods in the following questions. Use TreeTest.java from the package tree
to test your work.

1. [5 points] Write Java code to create the following tree using new Tree statements:

 1

 / \

 / \

 2 3

 / \ / \

 / \ / \

 4 5 6 7

 \ /

 8 9

Hint: You will need 9 such statements, i.e., 9 new Tree statements right away at
TreeTest.java as follows.

// Please do your work in here, i.e., build that “t” tree below

// ...

// ...

// ...

2. [5 points] Include a recursive method in Tree.java that will multiply by three every node
of the tree:

public void triple() {

 // Your code is in here

}

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 4

For example, the tree

 3

 / \

 / \

t = 4 5

 / \ / \

 / \ / \

 6 7 8 9

after doing

 t.triple();

should become
 9

 / \

 / \

 12 15

 / \ / \

 / \ / \

 18 21 24 27

Hint: Ask your left and right subtrees to apply the procedure to themselves and then
multiply by three your root node.

Don’t forget to always use TreeTest.java to test the correctness of your work.

3. [5 points] Include a recursive method in Tree.java that will print the dept-first traversal
of a tree, i.e., choosing left branches first.

public void printDepthFirst() {

 // Your code is in here

}

For example, the tree

 3

 / \

 / \

t = 4 5

 / \ / \

 / \ / \

 6 7 8 9

Should print

 3 4 6 7 5 8 9

Hint: Print your root, then ask your left subtree to print its depth-first traversal, and finally
ask your right subtree to print its depth-first traversal.

4. [10 points] Include a recursive method in Tree.java that generates a fresh copy of a tree:

public Tree createFreshCopy() {

 // Your code is in here

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 5

}

For example, given a tree t, this could be used as follows:

Tree u = t.createFreshCopy();

t.mirror();

Then the tree u should be exactly as t originally was before mirroring.
You are required to do this by executing new statements (one for each node of the tree).
You are not allowed to use the Java clone facility.

Hint: Ask your left and right subtrees to create fresh copies of themselves (and return them
to you). Then use their fresh copies to generate a fresh copy of yourself, using a new Tree
statement.

5. [5 points] Include a recursive method in Tree.java that will store the depth-first traversal
of a tree into a given array, as follows:

// Returns the last position of the array

public int saveDepthFirst(int a[], int whereToStart) {

 // Your code is in here

}

For example, the tree

 4

 / \

 / \

t = 5 6

 / \ / \

 / \ / \

 7 8 9 10

the program fragment

 int a[] = new int[13];

 int beginning = 4;

 int end = t.saveDepthFirst(a, beginning);

should fill the entries of the array as follows:

 ? ? ? ? 4 5 7 8 6 9 10 ? ?

and set the variable end to 10 (the last position of the array).

Hint: Store your root at position whereToStart. Ask your left subtree to store its depth-
first traversal at position whereToStart + 1, and return the next available position to
you, then ask your right subtree to store its depth-first traversal, starting from that
returned position. Don’t forget to be polite and pass the right’s result back to your caller,
using a return statement with the value returned by the call to the right sub-tree.

6. [5 points] Recall the definition of a binary search tree (BST): All the nodes in the left branch

are smaller than the root, all the nodes in the right branch are greater than the root, and
the left and right subtrees are themselves BST. Include a recursively defined method

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 6

public Tree find(int n) {

 // Your code is in here

}

that assuming you are a binary search tree, will return a (reference to) the subtree whose
root is equal to n. If such a subtree doesn’t exist, you should return null. Your algorithm
must be efficient: It should not search the whole tree, but one and only one path going
down from the root.

Hint: Check your root: What you are looking for may be there. If not, decide whether to
ask left or right to do their jobs, but not both.

7. [5 points] By using BST from no. 6, include a recursive method in Tree.java to insert a

new node in your BST in the correct position (which will be a leaf):

public Tree insert(int n) {

 // Your code is in here

}

Return the new tree if you succeed, and the current tree if the element is already there
and hence cannot be inserted.

Hint: Suitably modify your solution for finding an element (no. 6). If you find the element,
then it cannot be inserted. If you don’t find it, you have reached a leaf, and your element
must be inserted as a child of that leaf (and hence the leaf will not be a leaf any longer).

No. 8-15. In the package list, we have the following Java classes, i.e., List.java,
ListException.java, ListOps.java, and you must fill in more methods in the following
questions which should be written in Mid.java. Only make use of all of the methods in
List.java and ListOps.java for your work. Use MidTest.java from the package list
to test your work.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 7

8. [5 points] Include a recursive method in Mid.java that will negate a list:

static List negateAll(List a) {

 // Your code is in here

}

Given a list of integers a, write a method that returns a new list with all the elements of a
with sign negated, i.e., positive integers become negatives and negative integers become
positives. Example:

[2, -5, 8, 0] ==> [-2, 5, -8, 0]

9. [5 points] Include a recursive method in Mid.java that will perform searching for an

element:

static int find(int x, List a) {

 // Your code is in here

}

Given an integer x and a list a, write a method that returns the position of the first
occurrence of x in a. Positions are counted as 0, 1, 2, … . If x does not appear in the
list, your method must return -1. Example:

x: 3 a: [7, 5, 3, 8] ==> 2

x: 2 a: [7, 5, 3, 8] ==> -1

10. [5 points] Include a recursive method in Mid.java that will check for positive:

static boolean allPositive(List a) {

 // Your code is in here

}

Given a list of integers a, return a boolean value indicating whether all its elements are
positive, i.e., ≥ 0.

11. [10 points] Include a recursive method in Mid.java that will find the positives:

static List positives(List a) {

 // Your code is in here

}

Given a list of integers a, return a new list that contains all the positive elements of a. The
elements should appear in the result in the same relative order as in a. Example:

[2, 3, -5, 8, -2] ==> [2, 3, 8]

12. [10 points] Include a recursive method in Mid.java that will check the sorted-ness:

static boolean sorted(List a) {

 // Your code is in here

}

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 8

Given a list of integers a, this method must return a boolean value indicating whether a is
sorted in increasing order. There can be duplicate copies of elements. But, sorted-ness
would require that all the duplicate copies would appear together.

13. [10 points] Include a recursive method in Mid.java that will perform merging:

static List merge(List a, List b) {

 // Your code is in here

}

Given two sorted lists of a and b, your method must return a new sorted list that contains
all the elements of a and all the elements of b. Any duplicate copies of elements in a or b
or their combination are retained. Example:

a: [2, 5, 5, 8] b: [5, 7, 8, 9] ==> [2, 5, 5, 5, 7, 8, 8, 9]

a: [2, 5, 5, 8] b: [9] ==> [2, 5, 5, 8, 9]

14. [10 points] Include a recursive method in Mid.java that will remove duplicates:

static List removeDuplicates(List a) {

 // Your code is in here

}

Given a list a, this method must return a copy of list a with all duplicate copies removed.
Example:

[2, 5, 5, 5, 7, 8, 8, 9] ==> [2, 5, 7, 8, 9]

Hint: Think of defining helper functions, i.e., skip() as no. 15 below.

15. [5 points] Include a recursive method in Mid.java that will skip a given element of the

list:

static List skip(int x, List a) {

 // Your code is in here

}

Given a list a, this method must return a copy of the list a with a given element x skipped.
Example:

x: 5, a: [2, 5, 5, 5, 7, 8, 8, 9] ==> [2, 7, 8, 8, 9]

Hint: This method will be used at no. 14 above.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 9

16. To avoid plagiarism/cheating, every student needs to pledge and declare, then she/he
must submit her/his signed pledge and declaration as in the following. Failing to do so will
result in getting a 0 (zero) grade. Attach the scanned/photo of your declaration to your
report.

“By the name of Allah (God) Almighty, herewith I pledge and truly declare that I have solved
the midterm exam by myself, didn’t do any cheating by any means, didn’t do any plagiarism,
and didn’t accept anybody’s help by any means. I am going to accept all of the
consequences by any means if it has proven that I have done any cheating and/or
plagiarism.”

[Place, e.g., Surabaya], [date, e.g., 25 October 2023]

<Signed>

[Full name, e.g., Kinanti Wedariningsih]
[StudentID, e.g., 05112240000xxx]

17. Have a nice day, guys! Good luck!

