
2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 1

EF234302 Object-Oriented Programming (D)

Quiz 2

Starting date: 15 November 2023
Deadline: 23 November 2023, 23:59 WIB. Penalty: 0.15% of grade/minute of

tardiness.
Exam type: Open, Teamwork/Group (up to three students, it can be from class D

only, class IUP only, or the combination of class D & IUP)
Send to: MM Irfan Subakti <yifana@gmail.com>
 CC to Michael Ariel Manihuruk <michaelariel8@gmail.com>, Mashita

Dewi <mashitaad@gmail.com> & Adam Haidar Azizi
<adamhadaizi2002@gmail.com> with the subject:

 EF234302_OOP(D)_Q2_ StudentID1_Name1_StudentID2_Name2
File type & format: A zip file containing the source codes (the project files), Report.PDF &

Declaration(s).PDF. One declaration file per student. So, if a group has 3
members, then there will be 3 declaration files.

Filename format: EF234302_OOP(D)_Q2_ StudentID1_Name1_StudentID2_Name2.ZIP

Introduction

The predictive text will be implemented. It’s an application using the Java Collection classes.
The Graphical User Interface (GUI) will also be used for empowering the application.
 Recalling when we were entering text into a cell phone (handphone) without a full
keypad, a compromise is made by putting more than one letter on a single button. A common
layout can be seen below.

First row: 1 | 2 (ABC) | 3 (DEF)

Second row: 4 (GHI) | 5 (JKL) | 6 (MNO)
Third row: 7 (PQRS) | 8 (TUV) | 9 (WXYZ)

Fourth row: * | 0 (space) | #

In the standard system without predictive text, the user must press the appropriate
button several times for a particular letter to be shown. Consider the word “hello”. With this
method, the user must press 4, 4, 3, 3, 5, 5, 5, then pause, then 5, 5, 5, 6, 6, 6.
 Predictive text (T9) is a system that aims to reduce the number of button presses
needed to enter text. The user presses each button only once and several matching words are
presented by the predictive text. So, the word “hello” can be typed in 5 button presses “43556”

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 2

without pauses, instead of 13 times pressing the button in the standard keypad system. The
numeric string “43556” is referred to as a “signature” of the word “hello”.
 A given numeric signature can correspond to more than one word. Predictive text
technology is possible by restricting available words to those in a dictionary. Entering the
numeric signature “4663” produces the words “gone” and “home” in many dictionaries.
 You will design and develop a predictive text system. For simplicity, assume that the
user does not need punctuation or numerals. You have to limit your solutions to producing
only lower-case words. You must use the dictionary, e.g., the file words, found on our
website, along with this document. Use the package/class/method names given in the
question.

[1] Prototypes and design [25 points]
This part deals with building a “prototype” for the predictive text problem, which is not
expected to be efficient. However, it will be simple and allow us to compare it with the
efficient implementation to be done in later parts.
 Write the first two methods in a class named PredictivePrototype. The classes in
this assignment (except part 4) should be placed in a package called predictive.

1. [5 points] Write the method (in the PredictivePrototype class):

 public static String wordToSignature(String word)

The method takes a word and returns a numeric signature, e.g., “home” should return “4663”.
If the word has any non-alphabetic characters, replace them with a “ ” (space) in the resulting
signature. Accumulate the result character-by-character.

You should do this using the StringBuffer class rather than String. Explain, in
your comments, why this will be more efficient.

2. [10 points] Write another method in the PredictivePrototype class:

public static Set<String> signatureToWords(String signature)

It takes the given numeric signature and returns a set of possible matching words from the
dictionary. The returned list must not have duplicates and each word should be lowercase.
The method signatureToWords(String signature) will need to use the dictionary to
find words that match the string signature and return all the matching words.

You must not store the dictionary in your Java program. Explain in the comments why
this implementation is inefficient.

3. [10 points] Create command-line programs (classes with main methods) called
Words2SigProto for the wordToSignature method and Sigs2WordsProto for the
signatureToWords method.

Each program must accept a list of words and call the appropriate method to do the
conversion.

Run:
Word2SigProto home hello world my name is

Output:
input : [home, hello, world, my, name, is]

output : 4663 43556 96753 69 6263 47

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 3

Run:
Sigs2WordsProto 4663 43556 96753 69 6263 47

Output:
4663 : [hood, ione, ioof, good, hond, inne, gond, hone, hoof,

gone, goof, home, gome]

43556 : [gekko, hello]

96753 : [world, yorke]

69 : [ow, nw, ox, mw, oy, mx, ny, oz, my, nz]

6263 : [mane, name, mand, nane, nand, oboe, mame]

47 : [ip, hp, iq, gp, hq, ir, gq, hr, is, gr, hs, gs]

Hints

• Use the Scanner class to read the dictionary line by line, assume there is only one
word per line.

• When reading the dictionary, ignore lines with non-alphabetic characters. A useful
helper method to accomplish this would be:

private static boolean isValidWord(String word)

in PredictivePrototype, which checks if a given word is valid.

• To create the command-line programs, you will need to use the String[] args
array of the

public static void main(String[] args)

method to access command-line input. For example, when executing

Word2SigProto Hello World! this is the input

the String[] args array will contain

["Hello", "World!", "this", "is", "the", "input"]

Alternatively, in Eclipse you can write the argument in the menu Run > Run
Configurations… > Arguments

And don’t forget to set the correct file in the menu Run > Run Configurations… > Main

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 4

• You can ignore any words with non-alphabetic characters given in the input of
Sigs2WordsProto.

• Format the output of Sigs2WordsProto as one line per signature, as there may be
more than one word for a given numeric signature. E.g.,

D:/predictive/>java -cp .. predictive.Sigs2WordsProto 4663 329

4663 : good gone home hone hood hoof

329 : dax fax faz day fay daz

the actual output you get will depend on the dictionary used. Alternatively, in Eclipse
you can write the argument in the menu Run > Run Configurations… > Arguments

And don’t forget to set the correct file in the menu Run > Run Configurations… > Main

• In the above example, notice that the folder name is the same as the package name,
the full class name is used and the a -cp .. option is in the java command. This will
allow a class that is in the package predictive to run.

• The program Words2SigsProto can be tested by converting large amounts of text
to signatures, the output can be used to test Sigs2WordsProto (and later, in timing
comparisons).
Try using news articles to start with.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 5

[2] Storing and searching a dictionary [25 points]
Text input should be responsive, reading the entire dictionary from the disk each time a word
is looked up will cause a noticeable delay. In this part of the assignment, you will read and
store the dictionary in memory as a list of pairs. As the list will be sorted and in memory, a
faster look-up technique can be used.

1. [15 points] Create another class, named DictionaryListImpl. In its constructor, you
should read the dictionary from a file and store it in an ArrayList. Each entry of the
ArrayList must be a pair, i.e., the word that has been read and the corresponding signature,
so you will need to create a class named WordSig that pairs words and signatures (see the
hints).

The wordToSignature method will be the same so you can re-use the code from
the first part, i.e., [1] Prototypes and design – so, just only need to build the method/function:
signatureToWords. The signatureToWords method must be rewritten to use the
dictionary stored in the ArrayList<WordSig>. The ArrayList<WordSig> must be stored
in sorted order and the signatureToWords method must use binary search to perform the
lookups.

The result from your above method/function will be:

signatureToWords("4663") -> [hood, ione, ioof, good, hond, inne,

gond, hone, hoof, gone, goof, home, gome]

signatureToWords("43556") -> [hello, gekko]

signatureToWords("96753") -> [world, yorke]

2. [5 points] Based on the design of the DictionaryListImpl class, create and document
the Java interface Dictionary. This will be used in later parts.

3. [5 points] Design and create the command-line program Sigs2WordsList for the
DictionaryListImpl class. Compare the time taken to complete the execution of
Sigs2WordsList and Sigs2WordsProto with the same large input(s). Is it possible to make
the time difference between Sigs2WordsList and Sigs2WordsProto noticeable? Make a
note of the data you use and your timing results.

Run:
Sigs2WordsList 4663 43556 96753 69 6263 47

Output:
4663 : [hood, ione, ioof, good, hond, inne, gond, hone, hoof,

gone, goof, home, gome]

43556 : [hello, gekko]

96753 : [world, yorke]

69 : [ow, nw, ox, mw, oy, ny, mx, oz, nz, my]

6263 : [name, mane, nane, mand, oboe, nand, mame]

47 : [ip, iq, hp, ir, hq, gp, hr, gq, is, hs, gr, gs]

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 6

Hints

• Create a class which pairs the numeric signatures with words, like this:

public class WordSig implements Comparable<WordSig> {

private String words;

private String signature;

public WordSig (...) { ... }

public int compareTo(WordSig ws) { ... }

...

}

• When you read the dictionary, you will need to create new WordSig objects.

• A list of Comparable objects can be sorted using the method Collections.sort.

• To automatically sort a list using the collections API, the objects WordSig stored in
the list must implement the Comparable interface. That means they must have a
compareTo(...) method. compareTo returns -1, 0 or 1 according to whether the
current object is less than, equal to, or greater than the argument object, in the
intended ordering.

• List elements must be sorted by numerical order by signature. Note that the
alphabetic (String’s compareTo) order is not the same as the numerical order, you
must ensure that the WordSig is in numerical order. Only sort the dictionary once.

• You can search a sorted list using Collections.binarySearch. Note that binary
search will return the index of the first match it finds. You must return all matching
words. Scan above and below the found index to collect all matching words.

• The time command-line program on Linux/Mac OS machines will tell you how long
a given command takes to complete. E.g.,

a@b:~/predictive/$ time java -cp .. predictive.Sigs2WordsList

<input> <output>

real 0m0.286s

user 0m0.260s

sys 0m0.010s

Use the real elapsed time in all comparisons.

• For Windows OS machines, create a batch file, e.g., run.bat. Write down as follows.

ECHO StartTimer %Time% >> Timer.txt

<write down your command/program in here, e.g., MyProgram.jar>

ECHO StopTimer %Time% >> Timer.txt

For instance, we have run.bat as follows.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 7

Once it’s created, we can type run as below.

Timer.txt contents can be seen as follows.

From Timer.txt, you can tell how long a given command takes to complete.

[3] More efficiency and prefix-matching [25 points]
This part involves creating two improved implementations of the Dictionary interface.

1. [5 points] Implement a new class DictionaryMapImpl that stores the dictionary using a
generic multi-valued Map. In this context, a multi-valued map is a data structure that maps
signatures to a collection of words. Using a Map, data can be retrieved quickly by signature, as
in previously DictionaryListImpl but does not require scanning either side of the index
as in the previous part. DictionaryMapImpl should also allow the efficient insertion of new
words into the dictionary while still allowing fast look-up.

You must choose a Map implementation from the Java Collections API, explain how
the map works and justify your choice. The constructor DictionaryMapImpl must populate
the Map. Write the method signatureToWords that returns, in a Set<String>, only the
matching whole words for the given signature. The character length of each returned word
must be the same as the input signature.

The result from your above method/function will be:

signatureToWords("4663") -> [hood, ione, ioof, good, hond, inne,

gond, hone, hoof, gone, goof, home, gome]

signatureToWords("43556") -> [gekko, hello]

signatureToWords("96753") -> [world, yorke]

2. [15 points] Implement a new class DictionaryTreeImpl that now stores the dictionary
in your tree implementation. It should be possible to search the tree-based implementation
quickly (similar to DictionaryListImpl) and words can be inserted quickly (as in
DictionaryMapImpl). DictionaryTreeImpl should support finding words when only the
first part of the signature (a prefix) is known. This is so that the user can see the word they
intend to type as they are typing. This tree implementation is quite similar to the actual
implementations found in mobile phones.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 8

The DictionaryTreeImpl class forms a recursive data structure, similar to, but
more general than, the Tree class in our midterm exam weeks ago. This tree differs in that
each node now has up to eight branches, one for each number (2-9) that is allowed in a
signature. Each path of the tree (from the root to a node) represents a signature or part of a
signature. Each node of the tree must store a collection of words that corresponds to the part
of the signature represented by the path from the root to that node.

Write a constructor for the class DictionaryTreeImpl that takes a String path to
the dictionary and populates the tree with words. Write the method signatureToWords
that returns, in a Set<String>, the matching words (and prefixes of words) for the given
signature. The character length of each of the returned words or prefixes must be the same
as the input signature.

The result from your above method/function will be:

signatureToWords("4663") -> [inoe, inod, hood, inme, ioof, ione,

imme, good, inne, hond, inof, hooe, hone, gond, hoof, gooe, gnof,

home, gone, goof, honf, gome, gonf]

signatureToWords("43556") -> [gellm, helln, hellm, gekko, hello]

signatureToWords("96753") -> [workd, worle, world, workf, worke,

yorke]

3. [5 points] It should be possible to modify just one line in your Sigs2WordsList program
so that it can work with any given implementation of the Dictionary interface. Create the
programs Sigs2WordsMap and Sigs2WordsTree.

Compare the time taken to complete the execution of Sigs2WordsMap and
Sigs2WordsTree with large inputs. Is it possible to make the time difference between
Sigs2WordsList and Sigs2WordsMap or Sigs2WordsTree and Sigs2WordsMap
noticeable? Again, make a note of the data you use and your timing results.

Run:
Sigs2WordsMap 4663 43556 96753 69 6263 47

Output:
4663 : [hood, ione, ioof, good, hond, inne, gond, hone, hoof,

gone, goof, home, gome]

43556 : [gekko, hello]

96753 : [world, yorke]

69 : [ow, nw, ox, mw, oy, mx, ny, oz, my, nz]

6263 : [mane, name, mand, nane, nand, oboe, mame]

47 : [ip, hp, iq, gp, hq, ir, gq, hr, is, gr, hs, gs]

Run:
Sigs2WordsTree 4663 43556 96753 69 6263 47

Output:
4663 : [inoe, inod, hood, inme, ioof, ione, imme, good, inne,

hond, inof, hooe, hone, gond, hoof, gooe, gnof, home, gone, goof,

honf, gome, gonf]

43556 : [gellm, helln, hellm, gekko, hello]

96753 : [workd, worle, world, workf, worke, yorke]

69 : [ow, ox, nw, oy, mw, nx, ny, oz, mx, my, nz, mz]

6263 : [name, mane, ocne, mand, nane, ocoe, namd, obne, nand,

oboe, mcme, mcne, mame, manf]

47 : [ip, iq, hp, ir, gp, hq, is, hr, gq, gr, hs, gs]

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 9

Hints

• Both of the classes in this part of the assignment must implement Dictionary. Do
not use the WordSig class.

• When deciding what your Map will store in DictionaryMapImpl, keep in mind that
one signature often corresponds to several words.

• When developing DictionaryListImpl, you may notice it was useful to create
helper methods to add words to the data structure. Creating add helpers will simplify
the constructors of both DictionaryMapImpl and DictionaryTreeImpl.

• Before starting DictionaryTreeImpl, sketch a tree-dictionary containing 2-3
words.

• Every node of DictionaryTreeImpl will have a collection of words and eight
DictionaryTreeImpls.
You may use an array of DictionaryTreeImpl or just store several objects, as you
prefer.

• The signatureToWords method of DictionaryTreeImpl can be implemented
using a while-loop or recursion. When using recursion, you may find it useful to
create a helper method that performs the recursion.

• The root node of DictionaryTreeImpl should not store any words.

• In DictionaryTreeImpl it is more memory efficient to store only whole words as
read-in from the dictionary. You should do this and write a helper method to trim all
words in a given list.

[4] Graphical user interface [25 points]
In this part, you will develop a Graphical User Interface (GUI) for the previously developed
classes. You should create the following program in a new package: predictivegui.

1. [25 points] To ensure your GUI is reliable and does not interfere with the existing code, you
must use the Model View Controller (MVC) method of GUI development we have learned in
our lectures. MVC is a good discipline for building GUIs because it ensures that the user
interface code is separate from the program code. This makes it possible to change the user
interface without changing the underlying program.

You should encapsulate the Dictionary object in the model. The model contains a
constructor to load the dictionary and a get method to query the Dictionary with signatures.
The model may store one dictionary object and a list of entered words but must not store
signatures or spaces.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 10

In this program, there is one main control mechanism, the buttons. The message
appears in the text window which is the main view of the program, shown above the keypad.
Pressing button “2”, you will get one of “a”, “b”, or “c”. It should not be possible to edit or

type as you normally would with a full keypad in the text-field. To cycle through the words
that match, the user clicks the button labelled “*”. Pressing “0” completes the entry of the

current word and creates a space, ready for the entry of the next word. Last, the “backspace”
functionality can be done on the current word by pressing “#”, i.e., deleting one

character/letter from behind.

1. Type: 43556

2. Press: *

3. Press: *

4. Press: *

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 11

5. Press: *

6. Press: 0

7. Type: 96753

8. Press: #

9. Press: *

10. … and so on.

2023/2024(1) - EF234302 OOP (D) | MM Irfan Subakti & Michael Ariel Manihuruk

P a g e | 12

Hints

• Use what we have learned (and any material you may get from the internet).

• This part of the assignment can be developed using any implementation of the
Dictionary interface. It should not be necessary to modify any of your existing
classes to complete this part.

• You may want to implement more features such as number entry by keypad,
punctuation, editing already typed words, adding words to the dictionary, etc., but
make sure the basic functionality is working.

Declaration
To avoid plagiarism/cheating, every student needs to pledge and declare, then she/he must
submit her/his signed pledge and declaration as in the following. Failing to do so will result in
getting a 0 (zero) grade. Attach the scanned/photo of your declaration to your report.

“By the name of Allah (God) Almighty, herewith I pledge and truly declare that I have solved
quiz 2 by myself, didn’t do any cheating by any means, didn’t do any plagiarism, and didn’t
accept anybody’s help by any means. I am going to accept all of the consequences by any
means if it has proven that I have done any cheating and/or plagiarism.”

[Place, e.g., Surabaya], [date, e.g., 23 November 2023]

<Signed>

[Full name, e.g., Kinanti Wedariningsih]
[StudentID, e.g., 05112240000xxx]

Final task
Make a report of this project, namely Report.PDF, about what you have done, the output,
the answers to the mentioned questions, pseudocode, or whatever you think it’s important.

To maintain fairness for your awarded grade, state clearly in your report, the job
descriptions and the percentage (distribution) of work, along with the contribution(s) for each
member in your group. E.g., Kinanti Wedariningsih 55% [state Kinanti’s contribution(s) here],
and Sudiyanto Boiman 45% [state Sudiyanto’s contribution(s) here]. Include this distribution
and contribution section in your Report.PDF.

Then Report.PDF needed to be compressed (zipped). Rename the ZIP file to
EF234302_OOP(D)_Q2_StudentID1_Name1_StudentID2_Name2.ZIP. All of the
involved files in your project (the source codes and everything), as well as all of your
declaration files needed to be added to the ZIP file.

Have a wonderful day, guys! Good luck!

