
2023/2024(1)
EF234302 Object Oriented Programming

Lecture #3a

Eclipse IDE: Debugging
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти



Debugging: What’s that?

• Debugging allows you to run a program interactively while watching 
the source code and the variables during the execution.

• A breakpoint in the source code specifies where the execution of the 
program should stop during debugging. Once the program is stopped 
you can investigate variables, change their content, etc.

• To stop the execution, if a field is read or modified, you can 
specify watchpoints.

• Breakpoints & watchpoints→ stop points

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
2



Debugging support

• Eclipse allows you to start a Java program in Debug mode.

• Eclipse provides a Debug perspective which gives you a pre-
configured set of views. Eclipse allows you to control the execution 
flow via debug commands.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
3



Breakpoints: Setting up

• To define a breakpoint in your source 
code, right-click in the left margin in the 
Java editor and select Toggle 
Breakpoint. Alternatively you can 
double-click on this position.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
4



Breakpoint: Example

• For example in the following screenshot we set a breakpoint on the 
line Counter counter = new Counter();

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
5



Debugger: Starting

• To debug your 
application, select a 
Java file with a main 
method. Right-click on 
it and select Debug 
As > Java 
Application.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
6



Debug button

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
7

• If you started an application once via the context menu, you can use 
the created launch configuration again via the Debug button in the 
Eclipse toolbar.



Debug perspective

• If you have not defined any breakpoints, 
program will run normally. To debug the 
program you need to define breakpoints. 
Eclipse asks you if you want to switch to 
the Debug perspective once a stop point 
is reached. Answer Switch in the 
corresponding dialog. Afterwards Eclipse 
opens this perspective.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
8



Program execution

• Eclipse provides buttons in the 
toolbar for controlling the 
execution of the program you 
are debugging. Typically, it is 
easier to use the corresponding 
keys to control this execution.

• You use shortcut key to step 
through your coding. The 
meaning of these keys is 
explained in the following 
table.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
9

Key Description

F5 F5 executes the currently selected line and goes 
to the next line in your program. If the selected 
line is a method call the debugger steps into the 
associated code.

F6 F6 steps over the call, i.e., it executes a method 
without stepping into it in the debugger.

F7 F7 steps out to the caller of the currently 
executed method. This finishes the execution of 
the current method and returns to the caller of 
this method.

F8 F8 tells the Eclipse debugger to resume the 
execution of the program code until is reaches 
the next breakpoint or watchpoint.



Program execution (continued)

• The call stack shows the parts of the program which are 
currently executed and how they relate to each other. The 
current stack is displayed in the Debug view.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
10



Breakpoints view

• The Breakpoints view allows you to delete and 
deactivate breakpoints and watchpoints. You can also modify their 
properties.

• To deactivate a breakpoint, remove the corresponding checkbox in 
the Breakpoints view. To delete it you can use the corresponding 
buttons in the view toolbar. These options are depicted in the 
following screenshot.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
11



Breakpoints view (continued)

• If you want to disable all breakpoints at the same time, you can press 
the Skip all breakpoints button. If you press it again, your breakpoints 
are reactivated. This button can be seen in the following screenshot.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
12



Evaluating variables

• The Variables view displays fields and local variables from the 
current executing stack. Please note you need to run the 
debugger to see the variables in this view.

• Use the drop-down menu to display static variables.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
13



Evaluating variables (continued)

• Via the drop-down menu of 
the Variables view you can customize 
the displayed columns.

• For example, you can show the actual 
type of each variable declaration. For 
this select Layout > Select 
Columns…​ > Actual Type.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
14



Variable assignments: changing in debugging

• The Variables view allows you to change the values assigned to 
your variable at runtime. This is depicted in the following 
screenshot.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
15



Variable displaying: Detail formatter

• By default the Variables 
view uses the toString()
method to determine how 
to display the variable.

• You can define a Detail 
Formatter in which you can 
use Java code to define 
how a variable is displayed.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
16



Variable displaying: Detail formatter (cont’d)

• For example, the toString() method in the 
Counter class may show meaningless 
information, e.g., util.Counter@71bbf57e. 
To make this output more readable you can 
right-click on the corresponding variable and 
select the New Detail Formatter…​ entry from 
the context menu.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
17



Variable displaying: Detail formatter (cont’d)

• Afterwards you can 
use a method of this 
class to determine 
the output. In this 
example the 
getResult()

method of this class 
is used. This setup is 
depicted in the 
following screenshot.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
18


	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #3a Eclipse IDE: Debugging
	Slide 2: Debugging: What’s that?
	Slide 3: Debugging support
	Slide 4: Breakpoints: Setting up
	Slide 5: Breakpoint: Example
	Slide 6: Debugger: Starting
	Slide 7: Debug button
	Slide 8: Debug perspective
	Slide 9: Program execution
	Slide 10: Program execution (continued)
	Slide 11: Breakpoints view
	Slide 12: Breakpoints view (continued)
	Slide 13: Evaluating variables
	Slide 14: Evaluating variables (continued)
	Slide 15: Variable assignments: changing in debugging
	Slide 16: Variable displaying: Detail formatter
	Slide 17: Variable displaying: Detail formatter (cont’d)
	Slide 18: Variable displaying: Detail formatter (cont’d)

