2023/2024(1)
EF234302 Object Oriented Programming

Lecture #3a

Eclipse IDE: Debugging

Misbakhul Munir IRFAN SU BAKTI

=) f J1 N
muesacyn vy UP@AH CyBaKTH

Debugging: What’s that?

* Debugging allows you to run a program interactively while watching
the source code and the variables during the execution.

* A breakpoint in the source code specifies where the execution of the
program should stop during debugging. Once the program is stopped
you can investigate variables, change their content, etc.

* To stop the execution, if a field is read or modified, you can
specify watchpoints.

* Breakpoints & watchpoints > stop points

2023/2024(1) — Object Oriented Programming | MM Irfan

12.09.2023 Subakti

Debugging support

* Eclipse allows you to start a Java program in Debug mode.

* Eclipse provides a Debug perspective which gives you a pre-
configured set of views. Eclipse allows you to control the execution
flow via debug commands.

2023/2024(1) — Object Oriented Programming | MM Irfan

12.09.2023 Subakti

Breakpoints: Setting up

 To define a breakpoint in your source B e 2 (D ot
code, right-click in the left margin in the 5 wore utit.comter;

4

Java editor and select Toggle S public class Tester {

6

Breakpoint. Alternatively you can .
double-click on this position.

public static void main($

Teggle Breakpoint Ctrl+Shift+B
Disable Breakpeint Shift+Double Click
Teggle Tracepoint

Run to Line Ctrl+Alt+ Click

Go to Annotation Ctrl+1
Validate

Add Bookmark...
Add Task...

Show Cuick Diff Ctrl+Shift+Q

Show Line Mumbers

Folding

Pl Preferences...

2 Breakpoint Properties... Ctrl+Double Click

2023/2024(1) — Object Oriented Programming | MM Irfan
Subakti

12.09.2023

Breakpoint: Example

* For example in the following screenshot we set a breakpoint on the

line Counter counter = new Counter ()

12.09.2023

[4] Testerjava 52 [J] Counterjava

1 package main;

2

3 import util.Counter;

4

5 public class Tester {

8]

21
2023/2024(1) — Object Oriented Prograr 22 }
Subakti

public static void main(String[] args) {

Counter counter = new Counter();|

int result = counter.count(5);

if (result == 15) {
System.out.println("Correct™);

} else {
System.out.println("False");

}

try {
counter.count(256);

} catch (RuntimeException e) {
System.out.println("Works as expected");

}

Debugger: Starting |:

* To debug your
application, select a
Java file with a main i
method. Right-click on o
It and select Debug
As > Java
Application.

12.09.2023

9
10
11
12
13
14
15
16
17

19

22}
23

' Problems % @ Javadoc @ Declaration

} else {

System.out.print!

}
try {

counter.count(25¢
} catch (RuntimeExcey
System.out.print!

}

errors, 4 warnings, 0 others
2

Jescription

et Ak B e

Refactor

5 Warnings (4 iterns)

public static void main(S+—*-
Counter counter = new
int result = counter.
if (result == 15) {
System.out.print!

& i

O P

Revert File

Save

Open Declaration
Open Type Hierarchy
Open Call Hierarchy
Show in Breadcrumb
Cuick Qutline

Cuick Type Hierarchy
Open With

Show In

Cut

Copy

Copy Qualified Name
Paste

Cuick Fix
Source
Refactor
Local History

References

Declarations

Coverage As
Run As

Debug As
Team
Compare With
Replace With
Validate

Preferences...

Ctrl+Z

Ctrl+S

F3
F4
Ctrl+Alt+H
Alt+5Shift+B
Ctrl+0
Ctrl+T

*

Alt+Shift+W >

Ctrl+X
Ctrl+C

Ctrl+V

Ctrl+1
Alt+Shift+5 »
Alt+Shift+T »

>

>
>

L S

Type

7] 1lava Application h Alt+Shift+D, J

Debug Configurations...

G:1:64

2023/2024(1) — Object Oriented Programming | MM Irfan
Subakti

Debug button

* If you started an application once via the context menu, you can use
the created launch configuration again via the Debug button in the
Eclipse toolbar.

wr Mavigate Search Project Run Window Help

1 package main;

2023/2024(1) — Object Oriented Programming | MM Irfan

12.09.2023 Subakti

Debug perspective

This kind of launch is configured to open the Debug perspective when it suspends.

* If you have not defined any breakpoints, [semmrmmsia =
program will run normally. To debug the |@ e mmnmsmmana
program you need to define breakpoints.| memme
Eclipse asks you if you want to switch tO | oemememyseser

BN

the Debug perspective once a stop point
is reached. Answer Switch in the
corresponding dialog. Afterwards Eclipse
opens this perspective.

2023/2024(1) — Object Oriented Programming | MM Irfan

12.09.2023 Subakti

Program execution

* Eclipse provides buttons in the

toolbar for controlling the
execution of the program you
are debugging. Typically, it is

easier to use the corresponding

keys to control this execution.

* You use shortcut key to step
through your coding. The
meaning of these keys is
explained in the following
table.

12.09.2023 2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

0 00 ® & 3 =

B

F8 Stop F5 F6 F7

Key
F5

F6

F7

F8

Description

F5 executes the currently selected line and goes
to the next line in your program. If the selected
line is a method call the debugger steps into the
associated code.

F6 steps over the call, i.e., it executes a method
without stepping into it in the debugger.

F7 steps out to the caller of the currently
executed method. This finishes the execution of
the current method and returns to the caller of
this method.

F8 tells the Eclipse debugger to resume the
execution of the program code until is reaches
the next breakpoint or watchpoint.

Program execution (continued)

* The call stack shows the parts of the program which are
currently executed and how they relate to each other. The
current stack is displayed in the Debug view.

%5 Debug 32 [y Project Explorer =l g = 8
v Tester (1) [Java Application]
~ (12 main.Tester at localhost:60947
w o Thread [main] (Suspended)
= Tester.main(String[]) line: 12
s DProgramtJava'DENbinjavaw.exe (14 Sep 2021, 12:27:23)

2023/2024(1) — Object Oriented Programming | MM Irfan

12.09.2023 Subakti

10

Breakpoints view

* The Breakpoints view allows you to delete and
deactivate breakpoints and watchpoints. You can also modify their
properties.

* To deactivate a breakpoint, remove the corresponding checkbox in
the Breakpoints view. To delete it you can use the corresponding
buttons in the view toolbar. These options are depicted in the
following screenshot. S %s teins % o o= £

ﬁ&ﬂ@\ﬂ Ed='=.>|"'- g
1.2 Counter[lin

Bl Counter iin g] |mes| cted Breakpoints (Delete) |

1.2 Counter[line: 'I'I] unt{int)
[].2 Counter [line: 13] - count(mt]
2 Tester [line: 8] - main(String[])
2 Tester [line: 11] - main{String[])
2 Tester [line: 13] - main{String[])
2 Tester [line: 16] - main(String[])
2 Tester [line: 18] - main(String[])

[Trigger Point
[]Hit count: (®) Suspend thread () Suspend WM
2023/2024(1) - ObjeCt Oriented Programming | MM Irfan [] Conditional Suspend when 'true' Suspend when value ch

Subakti

12.09.2023 anges

11

Breakpoints view (continued)

* If you want to disable all breakpoints at the same time, you can press
the Skip all breakpoints button. If you press it again, your breakpoints
are reactivated. This button can be seen in the following screenshot.

(x)= Variables ®g Breakpoints I% 4 Expressions = 8
X % & ‘@4 ES[8

S Counter [line: 5] - count(int) — — -

Counter [line: 8] - count(int) Skip All Breakpoints (Ctrl+Alt+E) l
S Counter [line: 11] - count(int)

[].2~ Counter [line: 13] - count(int)

[@ Tester lline: 81 - main(Strinal Tl

2023/2024(1) — Object Oriented Programming | MM Irfan

12.09.2023 Subakti

12

Evaluating variables

* The Variables view displays fields and local variables from the
current executing stack. Please note you need to run the
debugger to see the variahlac in thic viawy,

(x)= Varigbles 57 ®g Breakpoints &9 Expressions = O

2=
Mame Value

G+ printin() returnec (Mo explicit return va...

& args String[0] (id=1%)
@ counter Counter (id=38)
@ result 15

» Use the drop-down menu to display static variables.

(x)= Variables %% @g Breakpoints &7 Expressions = 08
B 3
Marne Value Layout

G+ printin{) returnec (Mo exp ™

; P 0 t . : SF Show Constants Java
& args String[C

@ counter Counte o° Show Static Variables k

@ result 15 B Show Qualified Names

~ Show Null Array Entries
[@ Show References

Java Preferences...

2023/2024(1) — Object Oriented Programming | MM Irfan
Subakti

12.09.2023 13

Evaluating variables (continued)

(x)= Variables 32 ®g Breakpoints &7 Expressions = 8

* Via the drop-down menu of ST

the Variables view you can customize o o
the displayed columns.

* For example, you can show the actual
type of each variable declaration. For
this select Layout > Select
Columns... > Actual Type.

2023/2024(1) — Object Oriented Programming | MM Irfan

12.09.2023 Subakti

E = B
Value = Vertical

(Mo explicit Ef Horizontal
String[0] (is

Counter {ic] _
15 = Variables View Only

1 Show Columns
Select Columns...
5

;| Automatic —

3 Select Columns

Select the columns to display:

MName

] Declared Type
Value

] Actual Type
[Instance ID

[Instance Count

Select All

Dezelect All

Cance

14

Variable assignments: changing in debugging

* The Variables view allows you to change the values assigned to
your variable at runtime. This is depicted in the following
screenshot

[J] Tester.java [J] Counterjava 5% fa} ClassLoader.class = B (2= \Variables 52 ®g Breakpoints 4 Expressions = 8
1 package util; BB 3
2 MName Value
3 public class Counter { G+ no method return value

public int count(int x) { ° this Counter (id=33)
int result = 8; = O ;
O result]
if (x > @ && x <= 255) { o 4
for (int i =1; i <= x; i
result += i; = s
}
} else {
throw new RuntimeExceptic =
2023/2024(1) — Object Oriented Programming | MM Irfan 15

12.09.2023 Subakti

Variable displaying: Detail formatter

e By default the Variables
.) [J] Testerjava % [J] Counter.java i Classloader.class = B x=Varables 3I ®g Breakpoints &7 Expressions
view uses the toString () 1 package main;) . e §

method to determine hOW i import util.Counter; irgrog:nethodretum\ralue s G-
to display the variable. :

[

& counter

public class Tester { Select All Crl+A

@ result

6 =| Copy Variables Ctrl+C
76 public static void main(String[] Find... ChrleF
. o 8 Counter counter = new Counter = @, Change Value...
¢ You Ca n defl ne a DEtaI/ 9 int result = counter.count(5) f == E.UE
. Show Details As ¥
. . 0 if (result == 15) {
Formatter in which you can . System.out.println("Corre = B Alfeeencs.
. p) } else { £y Al Instances... Ctrl+Shift+M
use Java Cod e to d efl ne 3 System.out.println("False = Instance Count..
4 } Mew Detail Formatter... I} l
. . . g tr Open Declared Type 1 . .
h OW a Va rl a b I e I S d I S p I aye d [6 y EOUHtEF‘.COUHt(256) H = Open Declared Type Hierarcl:smcmt&a Detail FcrmaTi
7 } catch (RuntimeException e) Instance Breakpoints...
8 System.out.println("Works = : Y Watch
9 } <Choose a previously @ Open Pom
(4] } util.Counter w-, Import Binary Project
21 Source Lookup Info
- } L Inspect Ctrl+Shift+I
23
12.09.2023 2023/2024(1) — Object Oriented Programming | MM Irfan 16

Subakti

Variable displaying: Detail formatter (cont’d)

* For example, the tostring () method in the
Counter class may show meaningless
information, e.g., util.Counter@71bbf57e.
To make this output more readable you can
right-click on the corresponding variable and
select the New Detail Formatter... entry from
the context menu.

1= Variables 32 ®g Breakpoints &F Expressions

MName Value

B+ no method return value

o args String[0] (id=19)
counter Counter (id=33)

O result 15

[

<Choose a previously entered expression>

util.Counter@71lbbf57e

Variable displaying: Detail formatter (cont’d)

» Afterwards you can
use a method of this
class to determine
the output. In this

example the
getResult ()

method of this class
is used. This setup is
depicted in the
following screenshot.

12.09.2023

[J] Testerjava [J] Counterjava i3 {4} ClassLoader.class
1 package util;
2

public class Counter {

private int result = 8;

public int getResult() {
return result;

h

5
-

public int count(int x) {
if (x > @ & x <= 255) {
for (int 1 = 1; i <= x; i++) {
result += 1i;
¥
1 else {
throw new RuntimeException("x sho

h

return result;

2023/2024(1) — Object Oriented Programming | MM Irfan
Subakti

= Add Detail Formatter

Cualified type name:

|utiI.C0unter

Select Type...

Detail formatter code snippet (Ctrl+5pace for code assist):
getResult()

Enable this detail formatter

	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #3a Eclipse IDE: Debugging
	Slide 2: Debugging: What’s that?
	Slide 3: Debugging support
	Slide 4: Breakpoints: Setting up
	Slide 5: Breakpoint: Example
	Slide 6: Debugger: Starting
	Slide 7: Debug button
	Slide 8: Debug perspective
	Slide 9: Program execution
	Slide 10: Program execution (continued)
	Slide 11: Breakpoints view
	Slide 12: Breakpoints view (continued)
	Slide 13: Evaluating variables
	Slide 14: Evaluating variables (continued)
	Slide 15: Variable assignments: changing in debugging
	Slide 16: Variable displaying: Detail formatter
	Slide 17: Variable displaying: Detail formatter (cont’d)
	Slide 18: Variable displaying: Detail formatter (cont’d)

