
2023/2024(1)
EF234302 Object Oriented Programming

Lecture #3b

Classes and Objects
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти

Agenda

• Basic Java Class

• Strings

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
2

Basic Java Class: Hello World

• The simplest thing we can do is to print Hello world! from the program.

• In the main method, just write System.out.println("Hello
world!");

• Note that the capital letter, the dots, the type of quotes and the semicolon
are all important.

• We can write out, we need also to be able to read in, which is where the
args variable comes in handy.
• String aLineOfText = args[0];

• args contains all the words passed in to Java, and you can access them in turn using
args[0], args[1], args[2], args[3], ... and so on.

• args[0] contains the first word, args[1] contains the second word, args[2] is
the third, … and so on.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
3

Basic Java Class: Hello World (continued)

• These words are placed into args by typing them after
your program name on the command line: java
Hello2 Welcome to our Webpro lecture! and
the program would print Welcome as the value of
args[0], to as args[1], our as args[2], Webpro
as args[3], and lecture! as args[4].

• If we were to combine args for reading in words, and
System.out.println for printing to the screen, we
could then print the words given.

• String is what's known as an object type
• For now, you don't need to worry about this
• It's sufficient to know that in this example, we are

assigning the text in args[0] to the String variable
aLineOfText

• In fact, we can print that text back out:
System.out.println("She said, " +
aLineOfText + "!");

• Note how we've used the + to "add" words together.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
4

Numbers & arithmetic operations

• The interesting stuff really starts to happen when we work with numbers and
other types.

• Take a look at the following code
• int i = 0; int j = 3;

• We’re declaring two variables of type int, and giving them values of 0 and 3 respectively.
• We can do a lot with those numbers; in fact, basic arithmetic works just like we'd expect in

Java.

• If we write
• int result = 2 + i * j;

• The Java program will multiply i and j together, and then add 2, just like our calculator
would.

• The value worked out is then placed in result, just like we were given i the value 0, and j
was given the value 3 before.

• It follows mathematical precedence, so it will do the multiplication of i and j first, before
adding 2.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
5

Numbers & arithmetic operations (cont’d)

• +, -, \, and * represent the usual suspects of addition, subtraction, division
and multiplication.

• Parenthesis, “(“ & “)”, function as we expect too, but for powers of, we
need to use a method from the Math package, specially Math.pow().

• We put two values in the parenthesis, one for the value and one for the
power.
• For example: Math.pow(2, 3); will give you a value of 8, or 23.

• If we take System.out.println from the previous example, we can also
print out the results:
• System.out.println(Math.pow(2, 3)); That's not all we can do with numbers

in Java, but it's enough for now.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
6

Strings

• A String is a type of object in Java.

• It essentially refers to text.

• It's not as simple as it looks - it's actually a sequence of a more
primitive type, char (which represents a single character).

• Strings are represented within double quotes, but characters
only use single quotes
String myString = "Hello, my name is Yarik";

char myCharacter = 'y';

• Note that although String begins with a capital letter, char
doesn't. This is an important difference.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
7

String: For what?

•A lot!

•Check it out about the String class in the API at
• https://docs.oracle.com/javase/8/docs/api/

•We can see all the things that can be done to
Strings
• Some of them can be seen in the following

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
8

startsWith(String prefix)

•We can use this method to tell us if a String
starts with a certain letter or sequence of letters.
• It returns a Boolean
String myString = "the quick brown fox
jumps over the lazy dog";

if (myString.startsWith("the"))

System.out.println("It does!");

else

System.out.println("It doesn't!");

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
9

substring(int beginIndex) and

substring(int beginIndex, int endIndex)

• These two allow us to get part of a string
String mySecondString = "HelloYarik";

String secondToFifthWords =

mySecondString.substring(5); // "Yarik"

String firstWord = mySecondString.substring(0, 5);

// FirstWord is "Hello"

• Note that numbering starts from 0 with just about
everything in Computer Science!

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
10

charAt(int index)

•This returns the char that is the letter at position
index—again we start at 0
String anotherString = "abcde";

char characterTwo = anotherString.charAt(3);

// CharacterTwo is 'd'

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
11

length()

• Simply returns the length of the string, an int.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
12

String: Converting to integers/doubles

•Another thing we can do with Strings that isn't
contained in their API is convert them into integers
or doubles.
•We can do this by using Integer.parseInt(), or
Double.parseDouble(), but remember that
putting anything other than numbers through either
of these methods will throw errors at you.
•They are often useful when working with input from
args[0], so make a note of them!

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
13

Conventions

• Variable names
• There are a few things we’d like you to know about conventions for naming in

Java. Class names generally start with a capital letter
• public class MyClass {

• As such, the class above would be in a file named MyClass.java

• The class will still work if not named starting with a capital letter, but
conventions should be adhered to!

• Something else to consider is variable naming: variables, and methods (more
on those soon) start with lower case letters
• int myIntValue = 4;

• String myName = "Naya";

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
14

Variable names

• Note also the way that we’ve named those variables, using
something called camel case
• Each new ‘word’ in the variable name starts with a capital letter.

• Again, this is just convention.

• Some things, like types, must start with the correct case—
we’ll have seen this if we’ve tried to write
• system.out.println; or
• string s = "...";

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
15

Commenting

• It’s important to start commenting our work, so that
our reader can see what we’re doing.
• It’s also helpful to ourselves—our comments will help

us to identify what each part of our work does when
we go back to it.
•Getting into the habit now will serve us well, once we

start doing more complicated works.
•We will lose marks for not commenting, so start now!

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
16

Line comments

• Sometimes, we may just wish to document the function of a single line:
• String shorterString = s.substring(0, 3) ; // Take the first three

characters of s

• While it’s important to use comments to make our code easier to understand,
don’t overdo it, and in particular, make sure that our comments are meaningful
and do not just repeat the code in another language
• int i; // Declare an int called i

• i = 3; // Set i to 3

• System.out.println("i is equal to " + i); // Print what i is equal to

• This can get quite annoying to read. As a general rule, if someone else in our
cohort could easily understand what a line does, don’t comment it.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
17

Block comments

• If a comment is big enough that it has to span more than one line, use a block.

• These generally go before the code:
/* Set up a Scanner, read a line of text

* and store in line,

* print back to user.

*/

Scanner sc = new Scanner(System.in);

String line = sc.nextLine();

System.out.println(line);

• Again, be careful not to over comment and make sure that it doesn’t just
paraphrase the code!

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
18

Classes and Objects

• Being an object-oriented programming language, classes and objects
are the very bedrock on which Java is built.

• Think of a class like a blueprint for something which we’re going to
build upon later, and “objects of that class” being implementations of
the blueprint that we can actually do something with (i.e., hold data).

• In the lecture, we saw the classes Counter and Tester.
• These classes are simply templates, which represent what information will be

stored about each instance Object of type Counter and Tester.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
19

Object: What is that?

• If a class is a blueprint, then an object of that class is a design
based upon it.

• Let’s take a couple of examples.
• We have a class Dog that represents a generic Dog.

• Of course, it’s not possible for someone to just have a “generic Dog”.

• They have to have a specific breed of Dog—else all Dogs would be the
same.

• Every Dog is an instance object of the class Dog.

• Let’s say that several Dogs live in a kennel. First, we need to set up our
Dog class.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
20

Class Dog

public class Dog {

// Global fields

private int age;

private double weight;

private String name;

private String breed;

/* We don’t need a main method, because we don’t want to run "Dog" on its own.

We just need a Constructor

*/

public Dog(String name, String breed, int age, double weight) {

this.name = name;

this.age = age;

this.weight = weight;

this.breed = breed;

}

}

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
21

Class Dog (continued)

• Notice the keyword this.

• If we didn’t have that, what would happen?
• The line name = name wouldn’t make sense!

• Java wouldn’t know which was the field, and which the parameter.

• The keyword this means (in this case) “set the name field in this object to be
equal to the parameter name”.

• Another way to think of classes and objects is like a spreadsheet. The
class is like the column headers—the objects are like rows!

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
22

Creating Objects

• It’s all well and good writing Objects, but what do we then do with them? Well,
first we need to create or instantiate the Object. For most Objects, the only way
to do that is via the new keyword.
• Dog fido = new Dog("Fido" , "Jack Russell", 5, 12.5) ;

• What’s going on above? Well, the new keyword tells Java to make room in
memory for a new Object, and then calls the constructor of the given class to
create the new Object. The arguments we give must exactly match the ones
specified in the constructor, or Java will throw errors at us.

• Now we’ve created an object, we can apply methods to it, such as getters or
setters.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
23

Getters, Setters & Testing

• Often, we’ll need to get information from our objects—in the
example above, we would need to find out what the name, breed,
weight or age of each dog was.

• Note that the class fields for each of these are marked private.

• That means we can’t access them directly, or change them directly—
we need to use getter and setter methods.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
24

Getters

• A getter method is used to access the information in an object.

• Often, it just returns the value of one field.
public String getName() {

return name;

}

• Note the use of the return keyword. This returns information to from wherever
the method was called. If the return type of a method is anything but void, then
there must be a return statement.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
25

Setters

• As we already covered, the fields in Dog are private.

• This means they can only be modified by the class itself—via setter methods.
public void setName(String name) {

this.name = name;

}

• Note that the return type of these methods is generally void. This is because
they don’t need to return something, and so don’t need a return statement.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
26

Other methods and testing

• One of the most important methods in any class is the toString() method. This
returns a String representation of the object, and will usually look like nonsense,
unless you redefine it. In our case, we want the toString method in Dog to tell us
everything about a particular dog.
public String toString() {

return "Dog name: " + getName() + "; breed: " + getBreed()
+ "; age: " + getAge() + "; weight: " + getWeight()

+ " kg";

}

• Note that we’re using the getter methods to construct the String. This is good practice,
as we may want to do something to the values in the fields before they’re returned.

• Now that the Dog class is constructed, we can think about testing it.
• We can do this by creating several instances of Dog in some other class.
• With each of those instances, we can perform a few operations, and then check that the values

are what we expect.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
27

Other methods and testing (continued)

public static void main(String [] args) {

Dog firstDog = new Dog("Fred", "Yorkshire Terrier", 3, 7.6);

Dog secondDog = new Dog("Bella", "Rhodesian Ridgeback", 4, 11.6);

System.out.println(firstDog);

System.out.println(secondDog.toString()); // Equivalent to the line

// above’s behaviour

firstDog.setAge(6);

secondDog.setWeight(14.0);

System.out.println(secondDog.getName() + " is now " +

secondDog.getWeight() + " kg"); // Should be 14.0

. . .

}12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
28

JUnit test

• Now, we are going to create a simple JUnit test in order to test the getAge()
method.

• Simply put, we want to verify that once we have created a Dog object and its
getter is called (in this case the getAge()), the correct age is being returned.

• First, we start by defining a new class DogTest, with the necessary import
statements.

• Note that we do not have to type the import statements explicitly, but these will
be automatically generated in Eclipse once we specify the appropriate
annotations and JUnit commands, and place our cursor over them.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
29

JUnit test (continued)

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
30

• Dog.java

JUnit test (continued)

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
31

• DogTest.java

JUnit test (continued)

•Once the above
JUnit test is run, we
can note the green
bar in Eclipse
indicating that the
test was successful.
• In contrast, a red bar

indicates that a test
has failed.

12.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
32

	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #3b Classes and Objects
	Slide 2: Agenda
	Slide 3: Basic Java Class: Hello World
	Slide 4: Basic Java Class: Hello World (continued)
	Slide 5: Numbers & arithmetic operations
	Slide 6: Numbers & arithmetic operations (cont’d)
	Slide 7: Strings
	Slide 8: String: For what?
	Slide 9: startsWith(String prefix)
	Slide 10: substring(int beginIndex) and substring(int beginIndex, int endIndex)
	Slide 11: charAt(int index)
	Slide 12: length()
	Slide 13: String: Converting to integers/doubles
	Slide 14: Conventions
	Slide 15: Variable names
	Slide 16: Commenting
	Slide 17: Line comments
	Slide 18: Block comments
	Slide 19: Classes and Objects
	Slide 20: Object: What is that?
	Slide 21: Class Dog
	Slide 22: Class Dog (continued)
	Slide 23: Creating Objects
	Slide 24: Getters, Setters & Testing
	Slide 25: Getters
	Slide 26: Setters
	Slide 27: Other methods and testing
	Slide 28: Other methods and testing (continued)
	Slide 29: JUnit test
	Slide 30: JUnit test (continued)
	Slide 31: JUnit test (continued)
	Slide 32: JUnit test (continued)

