2023／2024（1）
 EF234302 Object Oriented Programming

Lecture \＃3d

Exercises

Misbakhu Munir IRFAN SUBAKTI
司馬伊凡
мисааххм мунир Ирфан Субакти

Ex1. Circle area: Problem

- The area A of the circle is computed by $\pi \cdot r^{2}$.
- Write a Java-program that makes this computation, initialize the variable r to 5 and print the result.
- Which types do you use for the variables A and r ? (Hint: Use Math. PI).

Ex1. Circle area: Solution

```
public class Exl {
    /** The variable A and r are declared as double and A is computed
        * from r as Math.PI * r * r and printed suitably.
        * The program is test with r = 5.
        */
    public static void main(String[] args) {
    double a;
    double r;
    r = 5;
    a = Math.PI * r * r;
    System.out.println("The area of a circle with radius " + r +
    " is " + a + ".");
    }
}
```


Ex2. Conversion: Problem

- Write a Java-program that converts masses given in the imperial system into kilograms. Make use of the following conversions:
- 1 ton 2240 pounds
- 1 hundredweight 112 pounds
- 1 quarter 28 pounds
- 1 stone 14 pounds
- 1 ounce

1/16 pounds

- 1 drachm

1/256 pounds

- 1 grain $1 / 7000$ pounds
- 1 pound 0.45359237 kilograms
- A person's weight corresponds to 11 stones and 6 pounds. Concretely the weight is stored by the two variables stones = 11; and pounds = 6; (all other variables such as tons are 0). Use your program to determine how many kilograms this is.

Ex2. Conversion: Solution (1)

```
public class Ex2 {
    /**
        * First the relationships are stored in variables:
        * 1 ton ~ 2240 pounds
        * 1 hundredweight ~ 112 pounds
        * 1 quarter
        ~ 28 pounds
        * 1 stone
        ~ 14 pounds
        * 1 ounce
        ~ 1/16 pounds
        * 1 drachm
        ~ 1/256 pounds
        * 1 grain
        ~ 1/7000 pounds
        * 1 pound
        ~ 0.45359237 kilograms
        * Then the imperial weight is transformed into pounds and
        * stored in a variable weightInPounds. Then this weight is
        * transformed in kilograms and the transformation is run for the ll stones
        * and 6 pounds from the worksheet. Finally the result is suitably printed.
        * /
```


Ex2. Conversion: Solution (2)

```
public static void main(String[] args) {
    double poundsPerTon = 2240;
    double poundsPerHundredweight = 112;
    double poundsPerQuarter = 28;
    double poundsPerStone
    double poundsPerOunce
    double poundsPerDrachm
    double poundsPerGrain
    double kilogramsPerPound
    = 14;
    = 1/16.0;
    = 1/256.0;
    = 1/7000.0;
    = 0.45359237;
    double tons = 0;
    double hundredweights = 0;
    double quarters = 0;
    double stones = 0;
    double pounds = 0;
    double ounces = 0;
    double drachms = 0;
    double grains = 0;
```


Ex2. Conversion: Solution (3)

```
/* We compute first the pounds by converting the stones to pounds and
    add the pounds. Then we multiply by kilograms_per_pound.
*/
stones = 11;
pounds = 6;
double weightInPounds =
    tons * poundsPerTon +
    hundredweights * poundsPerHundredweight +
    quarters * poundsPerQuarter +
    stones * poundsPerStone +
    pounds +
    ounces * poundsPerOunce +
    drachms * poundsPerDrachm +
    grains * poundsPerGrain;
double weightInKilograms = weightInPounds * kilogramsPerPound;
System.out.println("A person with " + stones + " stones and " + pounds +
    " pounds has a weight corresponding to " + weightInKilograms + " kilograms.");
}
```

\}

Ex3. Investment: Problem

- A capital of GBP 100 ($£ 100$) is invested at a fixed interest rate of 2.3 per cent.
- The interest is added to the capital at the end of each year.
- Use the formula to print the balance after each of the first 5 years and after 500 years.

$$
\text { total }=\text { capital } *(1+0.01 * \text { interest rate })^{\text {years }}
$$

Ex3. Investment: Solution (1)

```
public class Ex3 {
    /** In this exercise, the variables are declared and
    * initialized, then the formula on the worksheet is
    * translated to Java and the total capital computed after 1,
    * 2, 3, 4, 5, and 500 years. The code is repetitive (which is
    * bad), since we have not introduced methods at this point in
    * time yet.
    */
    public static void main(String[] args) {
        double capital = 100; // the initial capital in pounds
        double interestRate = 2.3; // the interest rate per year
        int years = 1; // the time for which the capital is invested in years.
        double total; // the resulting capital after interest added.
        total = capital * Math.pow(1 + 0.01 * interestRate, years);
```


Ex3. Investment: Solution (2)

```
System.out.println("After " + years + " years a capital of GBP " + capital +
    " grows with an interest rate of " + interestRate + "\u0025 to GBP " + Math.round(total));
    // u0025 = percentSign (%)
years = 2;
total = capital * Math.pow(1 + 0.01 * interestRate, years);
System.out.println("After " + years + " years a capital of GBP " + capital +
    " grows with an interest rate of " + interestRate + "\u0025 to GBP " + Math.round(total));
years = 3;
total = capital * Math.pow(1 + 0.01 * interestRate, years);
System.out.println("After " + years + " years a capital of GBP " + capital +
    " grows with an interest rate of " + interestRate + "\u0025 to GBP " + Math.round(total));
years = 4;
total = capital * Math.pow(1 + 0.01 * interestRate, years);
System.out.println("After " + years + " years a capital of GBP " + capital +
                            " grows with an interest rate of " + interestRate + "\u0025 to GBP " + Math.round(total));
years = 5;
total = capital * Math.pow(1 + 0.01 * interestRate, years);
System.out.println("After " + years + " years a capital of GBP " + capital +
                            " grows with an interest rate of " + interestRate + "\u0025 to GBP " + Math.round(total));
years = 500;
total = capital * Math.pow(1 + 0.01 * interestRate, years);
System.out.println("After " + years + " years a capital of GBP " + capital +
    " grows with an interest rate of " + interestRate + "\u0025 to GBP " + Math.round(total));
\}```

