2023/2024(1)
EF234302 Object Oriented Programming

Lecture #4a

Array, Arraylist & Scanner

Misbakhul Munir IRFAN SU BAKTI

=) f J1 N
muesacyn vy UP@AH CyBaKTH




All about array

* We've seen before, arrays are very, very common in all
programming languages.
public class Hello {

public static void main (String[] args)

e Seethe string[] args in the main method declaration? That’s
an array. An array is like a pigeonhole rack, with a fixed number
of slots.

* The idea is that we create an array knowing beforehand how big
it needs to be.



String array: Example

e Let's try an example. We only like five fruits, so we'll have an array of five
Strings to represent their names. The syntax for using an array is as follows:
String|[] fruitArray = new String[)];
fruitArray[0] = "srikaya";

* In the code above, we have created a new instance of Strin% array, and said
the maximum number of Strings that can go in this array is five. We’re then
putting the string "srikavya" in the first position in the array (again, we
number from zero).

. Excﬁr%ise: What would happen if we wrote fruitArray[5] = "durian"?
Why:

* Note that an array can store any type: Strings, BankAccounts, other arrays, etc., but also any
primitive type (int, char, boolean, etc.). This is very useful!

* Exercise: How would we create an array of ints, of size ten?



Array: Addressing and reading

* In an array, we use a number in square brackets to denote the position we want to set or modify. Note
that it's not possible to just add something to an array, we have to know where we want to put it.

e Assume the fruit array is now full of its five elements. We can print them out using a for-loop:
System.out.println ("The element at position 0 is " + fruitArray[0]);
for (int fruitIndex = 0; fruitIndex < 5; fruitIndex++) {
System.out.println ("Fruit " + fruitIndex + " 1is " + fruitArray|[fruitIndex]);

}

* This is fine, but it may not always work—what if we don't know how big the array is? What we actually
want to do is continue printing elements for the whole length of the array, and for that we can use the
.length command. This gives the size of the array, but notice—there are no parenthesis “ () ”:

for (int fruitIndex = 0; fruitIndex < fruitArray.length; fruitIndex++) ({
System.out.println ("Fruit " + fruitIndex + " is " + fruitArray|[fruitIndex]);

}
* We should always use . 1length when traversing an array.



Array shorthand

* If we know what we want to put in our array as soon as the array is
created, there is a shorthand way to fill it. The two examples below
are equivalent:

String[] firstFruitArray = new String[3];

firstFruitArray|[0] = "strawberry";
firstFruitArray|[l] = "raspberry";
firstFruitArray|[2] = "blackcurrant";
String|[] secondFruitArray = {"strawberry",

"raspberry", "blackcurrant"};

* Note that in the second example, we don’t specify a size, because the
size is implicit from the number of elements we put in the curly
brackets. A useful shortcut, but be sure to understand it first.



Back to the main method

* We saw at the previous lecture that the main method contains an array in
Its parameters:

public class Hello2 {
public static void main (String[] args) {

* We know that the main method is the first thing called when we type
java Hello?2, so what could that array of Strings be for?

* |n fact, it’s the command line arguments, such that if we type
D:\OOP>java Hello2 one two three

e the array args will hold the Strings "one", "two", "three". This array
is very important, and is used in a variety of situations when information
that a program needs is variable even after compilation.



Input

* By now, we all know how to make Java print, using the System.out.println command. Quite often
though, we need also to be able to read in:

Scanner sc = new Scanner (System.in);
String aLineOfText = sc.nextLine ()

 Scanner is a useful tool that allows us to grab input from the keyboard. In order to use it, we need to add
import java.util.Scanner to the top of our classes, to tell Java to include it in our code. In this
example, when we write sc.nextLine (), we’re reading a line of text from the keyboard, and assigning it to
al.ineOfText. Scanner provides a number of other useful input types, such as sc.nextInt () or
sc.nextDouble ():

System.out.println ("Pick an integer: ");
int value = sc.nextInt();
System.out.println("You picked " + wvalue +
". The square of that is " + (value * wvalue) + ".");

* If we enter something that isn’t an int, Java will throw an error and crash. Don’t worry, that’s normal—we’ll
explain how to deal with those kinds of errors in a better way.



ArrayList

* It’s very common when programming that we’ll want to store more than one of
something, but we might not know how many things we want to store. Take the
following example:

System.out.println ("Enter some fruit names. Enter #stop# to finish");
Scanner s _in = new Scanner (System.in) ;
String line = s_in.nextLine();
while (!line.equals ("#stop#") {
System.out.println("You just typed " + 1line);
line = s _in.nextLine();

}

* What does this code do? What if we wanted to store all of the fruit that the user
entered? We don’t know how many String variables are required. To get around this, we
use an ArrayList, which we can think of like a row of pigeonholes, which we can add
extra racks to when full.



ArrayList (continued)

* We can create and fill an ArrayList by modifying the code above. Note that we now need to import
Java.util.ArrayList too:

System.out.println ("Enter some fruit names. Enter #stop# to finish");
Scanner s_in = new Scanner (System.in);

ArrayList<String> fruit = new ArrayList<String>();

String line = s_in.nextLine () ;

// Keep adding fruit to the list

while (!line.equals ("#stop#") {

System.out.println("You just typed " + line + ". Adding it!");
fruit.add (1line);
line = s _in.nextLine () ;

}

System.out.println ("You entered " + fruit.size() +

" fruit. Can't you do better?");

* Have a look at what’s going on here. As before, we're setting up the Scanner, but this time we’re creating an
ArrayList (which will hold Strings), and adding each line that the user enters to the ArrayList using the
add method. At the end, the size of the ArrayList is obtained using the size method.

* What's clever about this is that the list will expand by itself, when it gets full, without we having to do anything.



Getter, Setter and other methods

* There are many operations we can perform on ArrayLists. The most obvious is to get an element at a specific
position. Let’s say we want the first element:

fruit.get(0) ;

* Exercise: Write code to get the 10t fruit from the list. Bear in mind that there may not be ten fruit in the list, and
we should handle this eventuality.

* We might also want to check whether any given fruit is in our list of fruit names—we learned that the boolean
type can store this sort of information:
boolean peachIsIn = fruit.contains ("peach");
if (peachIsIn) {
System.out.println ("You entered peach, somewhere, apparently");

} else {
System.out.println ("No peaches");

}
e ...and if so, we might want to know the position within the ArrayList that peach is:

int positionOfPeach = fruit.indexOf ("peach");
int positionOfBanana = fruit.indexOf ("banana");



Getter, Setter and other methods (cont’d)

If the String we look for isn’t in the list, index0f will return -1.

It’s also possible to set a value at a particular position. We've gone off plums of
late, and prefer lemons. Plums are in position 3:

fruit.set (3, "lemon");

Alternatively we might decide to remove a fruit completely:
fruit.remove (3);
fruit.remove ("plum") ;

Note that these two methods are very different. In the first case, we just remove
the element at position 3, irrespective of what it is (actually, that element is
returned by the remove call). In the second, we try to remove the first instance
of a string "p1um" in the list—this returns a boolean (why?).



Repetition & conditionals with ArrayList

ArrayLists are the perfect excuse to get more practice with for, while and if! We’ve already
used i £ above, to check if something was in the list:

if (fruit.contains ("nectarine")) {
System.out.println("Yes to nectarines!");
}
Something quite important is to be able to print out all of the elements in the list. A for-loop is
perfect for that:
for (int j = 0; j < fruit.size(); Jj++) {
System.out.println (fruit.get(j));
}

Note that the for-loop will stop repeating when § is equal to the size of the list, and that we’re
always printing the j-th element of the list (from 0 through size () -1).

The while loop is also useful for list processing. We saw above that we can keep adding
elements to a list until the user wishes to stop.



Array or ArraylList?

* Good question.

* Arrays are, we might say, more basic than ArrayLists. They don’t
require any extra imports, and are compatible with more types.
It’s also easier to visualise something like a two-dimensional
array, and to access its elements.

* However, arrays are immutable. If you need to make one bigger,
you’re stuck (there is a way, but it’s long-winded. Any ideas?). It’s
far better to just use an ArraylList in these circumstances.

® java.lang.System.arrayCopy, java.util.ArrayList<T>, java.util.Arrays.copyOf



	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #4a Array, ArrayList & Scanner
	Slide 2: All about array
	Slide 3: String array: Example
	Slide 4: Array: Addressing and reading
	Slide 5: Array shorthand
	Slide 6: Back to the main method
	Slide 7: Input
	Slide 8: ArrayList
	Slide 9: ArrayList (continued)
	Slide 10: Getter, Setter and other methods
	Slide 11: Getter, Setter and other methods (cont’d)
	Slide 12: Repetition & conditionals with ArrayList
	Slide 13: Array or ArrayList?

