
2023/2024(1)
EF234302 Object Oriented Programming

Lecture #5a

Javadoc, Testing & Objects
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти

Class: Get back!

• First we will consider classes and objects, and how to write and test them. Let’s go back to consider the
structure of a class.

• At the top of the class there’s a sensible place to put fields. It referred to as global variables, class
variables, and other things besides. They are global because they have scope throughout the class—
any method can access or change them. They are private so that only the class itself can access or
change them.

• Underneath that is the constructor, which is what gets called to set the fields’ values whenever some
other class creates a new Dog(...). Often there will only be one constructor (if we don’t write one,
Java puts one there for us, but it won’t do much). Sometimes, though, we’ll need more than one.

• Under the constructor go the methods! One convention is to put getter methods (which return the
fields, or something to do with them) first, and then setter methods (which modify fields) next,
followed by the toString() method at the bottom. Often we also write an equals() method to
test whether two objects should be considered as the same. However, it’s important to note that
methods, constructors and fields can really go in whatever order we want (just don’t go putting
methods inside methods).

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
2

Constructor: Multiple existence

• Let’s think about a class representing bank accounts. When a user sets up a bank account, they can either open it with some
money (in which case, they get a 50 overdraft), or they can open it empty (in which case, they only get a 10 overdraft). How can we
represent this in Java? Well, we can give the BankAccount class multiple constructors—depending on the way in which a
BankAccount object is instantiated, different actions are performed:

public class BankAccount {

private double balance;

private int overdraft;

public BankAccount(double openingAmount) {

balance = openingAmount;

overdraft = 50;

}

public BankAccount() { // No parameters supplied, so default

balance = 0;

overdraft = 10;

}

// Getters , setters

}

• Now, to create an instance of BankAccount with a zero opening balance, we can write BankAccount ba1 = new

BankAccount();. If we want to open an account with £25, we can write BankAccount ba2 = new BankAccount(25);,
and then the overdraft is extended to £50. Having multiple constructors is useful for situations when things need to have different
values depending on which initial parameters are supplied to the constructor.

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
3

Javadoc

• As programmers, we’ll often need to know how other programmers’ methods can work
with our own. For this reason, we’ve already shown that commenting is very useful.
However, although comments within methods are important to people who will view our
source code, what about people who just want to know what inputs a method requires,
what outputs are given, and what the function of our method is? We need to be able to
comment on the function of a method without going into its implementation detail, and
for that we use Javadoc.

• In the following diagram, we see some of this:
/**

* Get dog name

* @return dog’s name

*/

public String getName() {

return name;

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
4

Javadoc (continued)

• This is quite a simple method, so documenting it is easy too. A Javadoc comment begins with a slash, two asterisks “/**”and a return, and
ends with */. The first line is a brief description of what the method does. Then, we describe the parameters of the method, each in the
form

@param <parameterName> <description>

• and lastly (if applicable), we say what the method returns, using @return <what is returned>. For a more complex method, we might
need both of these components. Back to the Bank Account:

/**

* Calculate interest after a certain number of years

* @param initial the initial balance

* @param years the number of years

* @param rate the interest rate

* @return the compound interest on the balance

/

public double interestOn(double initial, int years, double rate) {

double totalInterest;

// Calculate interest

return totalInterest;

}

• It’s important that our Javadoc comment all of your methods, including the constructor. Then try out producing an API for your code. In the
terminal (in the directory of our work), type javadoc MyFile.java. The tool will produce HTML for the class (note we can generate
Javadoc for all of our classes, if we’ve written it, with javadoc *.java). Open index.html in a browser, and we should find it looks rather
like the normal Java API!

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
5

Using API Classes: Random

• Talking of the API, there are a number of useful classes in there for us to use! We need to be able to
generate random numbers. We can do this either using Math.random(), or by using the
java.util.Random class. java.util.Random has the advantage that we can create random ints,
or even booleans, instead of simply doubles. To use it, we need to import java.util.Random at
the top of our class, and then create a new instance of Random with the line (for example)
Random rand = new Random();

• Now, anywhere we want a random double (between 0 and 1), we can simply ask rand for it:
double randomNumber = rand.nextDouble();

• Note that this method gets only double values. What if we want a random integer? Well, there are
methods for that:
int randomInt = rand.nextInt();

// An int between 0 (inclusive) and 10 (exclusive)

int upperBoundedInt = rand.nextInt(10);

• There are other methods provided by the Random class to give other forms of randomness. See the API
page at https://docs.oracle.com/javase/8/docs/api/java/util/Random.html for more
details.

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
6

https://docs.oracle.com/javase/8/docs/api/java/util/Random.html

JUnit: Recap

• In order to ensure that our code works, we are using JUnit to build test cases. This is not only to ensure it
works now, but it also allows us to check again after making any changes.

• A JUnit test is defined like a normal Java class, and each test case is a regular Java method. However, there
are some differences between JUnit classes and methods, and regular Java classes and methods.

• First Java classes may have a public static void main(String args[]) method, as the way to
start the Java application. JUnit tests, however, do not have a main method.

• JUnit test cases, also start with @Test. This is because they are a normal method, and so this marker allows
JUnit to tell if the method is a test case or not. JUnit will only know that the method is a test case, if it starts
with @Test.

• Finally Java applications are started on the command line, in the style:

java MyApplication

• Where MyApplication is a class with a main method. JUnit tests, however, are run slightly differently:
java org.junit.runner.JUnitCore MyTestClass

• Here the main application is JUnitCore, which in turns runs our tests in MyTestClass. The key point to
take away, is that JUnit is both a library for writing tests, and an application for running tests. It does both!

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
7

JUnit Test: Example

• Almost anything can be tested with a JUnit test. Imagine the following class from an
earlier lecture:
public class Dog {

private String name;

private int age;

public Dog(String name, int age) {

this.name = name;

this.age = age;

}

public int getAge() {

return this.age;

}

public void incrementAge() {

this.age++;

}

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
8

JUnit Test: Example (continued)

• In this class, there are two methods that require testing: getAge() and incrementAge(). We would
then test this using the following JUnit test:
import static org.junit.Assert.*;

import org.junit.Test;

public class DogTest {

@Test

public void testGetAge() {

Dog rover = new Dog("Rover", 5);

// Test age is equal to 5

assertEquals("Age is 5", 5, rover.getAge());

// Increment age by 1

rover.incrementAge();

// Test value has been updated correctly

assertEquals("Age is now 6", 6, rover.getAge());

}

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
9

JUnit Test: Example (continued)

• In this example, we are testing that the two methods work correctly using the assertEquals() method.

• This method takes an string explanation of the test, the expected result and the method call.

• If the result of the method call matches the expected result, the test passes, otherwise it fails.

• The @Test notation is important to identify the method as a test method.

• We can have multiple test methods within a single test class, and it is important we should use multiple test cases
to test each method.

• Test the relevant parts of our program. When we test an array it is important to test the array bounds. For a
conditional, are all cases covered by at least one test? Are boundary cases covered? There are other methods that
can be used for this, including assertTrue(test), which is for testing methods that return boolean (along with
the matching assertFalse()).

• Note that because of rounding errors a test for equality on the type double should be done using
assertEquals(String testName, double expected, double actual, double epsilon) to test
that the two values differ by at most epsilon.

• A full list of the available assert methods can be found here: https://github.com/junit-
team/junit/wiki/Assertions

• There is also a very useful guide on using JUnit tests with Eclipse here:
https://www.vogella.com/tutorials/JUnit/article.html#installation_junit

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
10

https://github.com/junit-team/junit4/wiki/Assertions
https://github.com/junit-team/junit4/wiki/Assertions
https://www.vogella.com/tutorials/JUnit/article.html#installation_junit

	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #5a Javadoc, Testing & Objects
	Slide 2: Class: Get back!
	Slide 3: Constructor: Multiple existence
	Slide 4: Javadoc
	Slide 5: Javadoc (continued)
	Slide 6: Using API Classes: Random
	Slide 7: JUnit: Recap
	Slide 8: JUnit Test: Example
	Slide 9: JUnit Test: Example (continued)
	Slide 10: JUnit Test: Example (continued)

