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Method: Multiple versions?

• In many situations it may be the case that we have many objects that are very similar, 
and want to be able to apply very similar methods to them. The problem is, however, 
that the finer details in these operations (fetching one variable from one object type 
compared to another) means that we have to define multiple versions of the same 
method to handle each case.

• Take, for example, a method to compute the average balance of an array of 
BankAccount objects:
public static double average(BankAccount objects[]){

if (objects.length == 0) { return 0; }

double sum = 0.0;

// Loops through each object in array

for(BankAccount obj : objects) {

sum = sum + obj.getBalance();

}

return sum / objects.length;

}
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Method: Multiple versions? (continued)

• This is a simple method. Now suppose we have a list of (Country) objects and we want to calculate the average area:
public static double average(Country objects[]) {

if (objects.length == 0) { return 0; }

double sum = 0.0;

// Loops through each object in array

for(Country obj : objects) {

sum = sum + obj.getArea();

}

return sum / objects.length;

}

• As we can see, the two methods are virtually identical, except for the object types and the getter name.

• This is where interfaces come in. An interface is essentially the instructions for making a new object. An interface is created using 
the interface keyword:

public interface Measurable {...}

• An interface will contain the names, return types and parameters of any methods that must be featured in a class using the 
interface, for example:

public interface Measurable {

public double getMeasure();

}

• Notice that the method is missing a body, only has function header. A method in an interface must be abstract, i.e., it contains 
no code.
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Implementing an Interface

• Now we have our interface, we can “implement” it by using the implements keyword. This comes in the 
class declaration, and a class can implement many interfaces. What if we take the Measurable example from 
above in the case of the BankAccount and Country classes? We can now make the BankAccount and 
Country classes implement Measurable:

// BankAccount Class

public class BankAccount implements Measurable {

public double getMeasure() {

return balance;

}

}

// Country Class

public class Country implements Measurable {

public double getMeasure() {

return area;

}

}
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Implementation (continued)

• We can now rewrite our average() method to handle both of these classes:
public static double average(Measurable objects[]) {

if (objects.length == 0) { return 0; }

double sum = 0;

// Loops through each object in array

for (Measurable obj : objects) {

sum = sum + obj.getMeasure();

}

return sum / objects.length;

}

• We can then use these as follows:
public static void main(String[] args) {

// One way

Measurable accounts[] = new Measurable[3];

accounts[0] = new BankAccount("01", "Aleksandra", 100);

accounts[1] = new BankAccount("02", "Natasha", 150);

accounts[2] = new BankAccount("03", "Sergei", 125);

System.out.println("Average balance is: " + average(accounts));

// Second way

BankAccount b1 = new BankAccount("01", "Aleksandra", 100);

BankAccount b2 = new BankAccount("02", "Natasha", 150);

BankAccount accounts2[] = {b1, b2};

System.out.println("Average balance is: " + average(accounts2));

}
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Implementation (continued)

• There are a few important points here. While we can define variables that have a type of an interface:
Measurable x;

• There is no constructor for an interface, i.e., the following will result in an error.
Measurable x = new Measurable(); // Error

• We can, however, make an object that is defined as Measurable, but is constructed as an object that 
implements it:
Measurable y = new BankAccount("01", "Aleksandra", 100);
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Interface: Usage

• One example of use for an interface is in an industrial setting.

• Imagine a piece of image editing software that provides a set of built in methods 
which apply some operations.

• The code to these is kept secret, however, as the algorithms are trade secrets.

• The program allows the user to create their own plugins using Java objects.

• The user still need to be able to use these built in methods, without viewing the 
source code.

• All that needs to be done by the software publishers is to provide an interface for 
user-built objects.

• This interface can then be used to allow any custom user object to be passed to 
the secret methods.
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Interface: Database project example

• Scenario
• Two methods of representing a table (here called a “database”)

• Client wants to choose one or the other, based on information determined 
when it is first run
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LinearDB & TreeDB classes

• Client decides at the start which representation to use, then has an 
if whenever it does a database operation
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DBClient class

• Thus, every use of database operation 
must be enclosed in test to make sure 
correct variable is used
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Database project using Interface

• Recap
• Interfaces are a type of Java component which is like a class, but contains only 

function headers, not definitions, no code

• It is used to declare the set of operations that an object may have

• Alternative to this structure can be obtained by using DBops
interface, as follows:
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Using Interface

• Change LinearDB and TreeDB as follows:
• In header, add implements DBops

• Declare addKey and search as public (no other changes needed)
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Update DBClient class

• Use DBops as a type, and declare a 
variable, say db, of that type. db can 
contain a reference either to a 
LinearDB or a TreeDB object
• Interfaces can be used as types to declare 

variables

• Assign appropriate type of object to db

• Use ordinary instance method call 
syntax with db as the receiver
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Type hierarchies

• Objects of type LinearDB and TreeDB (“subtypes”) can be regarded 
as being of type DBops (the “supertype”)

• During the assignment and parameter-passing, such conversion from 
subtypes to supertypes happens automatically
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Interfaces in Java API

• java.lang have many 
interfaces

• Comparable, 

Runnable, …
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Interfaces in Java API (continued)

• java.util have many 
interfaces

• Collection, 

Comparator, List, 

Map, …
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Comparable

• Most Collection classes have a sort method

• Sorting involves comparing elements

• Comparison method to sort via the Comparable interface
public interface Comparable {

public int compareTo(Object o);

}
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Comparable: Example

• Suppose we have an array of names, where each name consists of a 
last name and a first name
public class Name implements Comparable {

String lastName, firstName;

public Name(String lastName, String firstName) {

…

}

int compareTo(Object o) {

…

}

}
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Comparable: Example
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Type hierarchies

• Subtype-to-supertype conversion happens automatically

• However, supertype-to-subtype conversion requires an explicit cast 
• Down-casting
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Interfaces in AWT package

• Interfaces in java.lang.awt
interface ActionListener {

void actionPerformed(ActionEvent e);

}

• Button objects, among others, can have action listeners:
addActionListener(ActionListener)

removeActionListener(ActionListener)
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Interfaces in AWT package (continued)

• Any object that implements the ActionListener interface can add 
itself as a listener for a button

• Suppose we had an animation with bouncing balls, pendulums, 
rotating spirals, etc. All of them can be listeners for a Stop button
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Interfaces: Pros and Cons

• Pro: Classes can implement any number of interfaces

• Con: Interfaces contain no code, only declarations of methods
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Code sharing

• Suppose we want both LinearDB and TreeDB to have the following 
extra methods:
void addSeveral (int keys[])

boolean findOneOf (int keys[])

• Both with have similar-looking code. Should we repeat it in both 
classes?
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