
2023/2024(1)
EF234302 Object Oriented Programming

Lecture #5b

Interface
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти



Method: Multiple versions?

• In many situations it may be the case that we have many objects that are very similar, 
and want to be able to apply very similar methods to them. The problem is, however, 
that the finer details in these operations (fetching one variable from one object type 
compared to another) means that we have to define multiple versions of the same 
method to handle each case.

• Take, for example, a method to compute the average balance of an array of 
BankAccount objects:
public static double average(BankAccount objects[]){

if (objects.length == 0) { return 0; }

double sum = 0.0;

// Loops through each object in array

for(BankAccount obj : objects) {

sum = sum + obj.getBalance();

}

return sum / objects.length;

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
2



Method: Multiple versions? (continued)

• This is a simple method. Now suppose we have a list of (Country) objects and we want to calculate the average area:
public static double average(Country objects[]) {

if (objects.length == 0) { return 0; }

double sum = 0.0;

// Loops through each object in array

for(Country obj : objects) {

sum = sum + obj.getArea();

}

return sum / objects.length;

}

• As we can see, the two methods are virtually identical, except for the object types and the getter name.

• This is where interfaces come in. An interface is essentially the instructions for making a new object. An interface is created using 
the interface keyword:

public interface Measurable {...}

• An interface will contain the names, return types and parameters of any methods that must be featured in a class using the 
interface, for example:

public interface Measurable {

public double getMeasure();

}

• Notice that the method is missing a body, only has function header. A method in an interface must be abstract, i.e., it contains 
no code.

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
3



Implementing an Interface

• Now we have our interface, we can “implement” it by using the implements keyword. This comes in the 
class declaration, and a class can implement many interfaces. What if we take the Measurable example from 
above in the case of the BankAccount and Country classes? We can now make the BankAccount and 
Country classes implement Measurable:

// BankAccount Class

public class BankAccount implements Measurable {

public double getMeasure() {

return balance;

}

}

// Country Class

public class Country implements Measurable {

public double getMeasure() {

return area;

}

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
4



Implementation (continued)

• We can now rewrite our average() method to handle both of these classes:
public static double average(Measurable objects[]) {

if (objects.length == 0) { return 0; }

double sum = 0;

// Loops through each object in array

for (Measurable obj : objects) {

sum = sum + obj.getMeasure();

}

return sum / objects.length;

}

• We can then use these as follows:
public static void main(String[] args) {

// One way

Measurable accounts[] = new Measurable[3];

accounts[0] = new BankAccount("01", "Aleksandra", 100);

accounts[1] = new BankAccount("02", "Natasha", 150);

accounts[2] = new BankAccount("03", "Sergei", 125);

System.out.println("Average balance is: " + average(accounts));

// Second way

BankAccount b1 = new BankAccount("01", "Aleksandra", 100);

BankAccount b2 = new BankAccount("02", "Natasha", 150);

BankAccount accounts2[] = {b1, b2};

System.out.println("Average balance is: " + average(accounts2));

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
5



Implementation (continued)

• There are a few important points here. While we can define variables that have a type of an interface:
Measurable x;

• There is no constructor for an interface, i.e., the following will result in an error.
Measurable x = new Measurable(); // Error

• We can, however, make an object that is defined as Measurable, but is constructed as an object that 
implements it:
Measurable y = new BankAccount("01", "Aleksandra", 100);

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
6



Interface: Usage

• One example of use for an interface is in an industrial setting.

• Imagine a piece of image editing software that provides a set of built in methods 
which apply some operations.

• The code to these is kept secret, however, as the algorithms are trade secrets.

• The program allows the user to create their own plugins using Java objects.

• The user still need to be able to use these built in methods, without viewing the 
source code.

• All that needs to be done by the software publishers is to provide an interface for 
user-built objects.

• This interface can then be used to allow any custom user object to be passed to 
the secret methods.

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
7



Interface: Database project example

• Scenario
• Two methods of representing a table (here called a “database”)

• Client wants to choose one or the other, based on information determined 
when it is first run

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
8



LinearDB & TreeDB classes

• Client decides at the start which representation to use, then has an 
if whenever it does a database operation

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
9



DBClient class

• Thus, every use of database operation 
must be enclosed in test to make sure 
correct variable is used

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
10



Database project using Interface

• Recap
• Interfaces are a type of Java component which is like a class, but contains only 

function headers, not definitions, no code

• It is used to declare the set of operations that an object may have

• Alternative to this structure can be obtained by using DBops
interface, as follows:

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
11



Using Interface

• Change LinearDB and TreeDB as follows:
• In header, add implements DBops

• Declare addKey and search as public (no other changes needed)

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
12



Update DBClient class

• Use DBops as a type, and declare a 
variable, say db, of that type. db can 
contain a reference either to a 
LinearDB or a TreeDB object
• Interfaces can be used as types to declare 

variables

• Assign appropriate type of object to db

• Use ordinary instance method call 
syntax with db as the receiver

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
13



Type hierarchies

• Objects of type LinearDB and TreeDB (“subtypes”) can be regarded 
as being of type DBops (the “supertype”)

• During the assignment and parameter-passing, such conversion from 
subtypes to supertypes happens automatically

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
14

DBops

LinearDB TreeDB



Interfaces in Java API

• java.lang have many 
interfaces

• Comparable, 

Runnable, …

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
15



Interfaces in Java API (continued)

• java.util have many 
interfaces

• Collection, 

Comparator, List, 

Map, …

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
16



Comparable

• Most Collection classes have a sort method

• Sorting involves comparing elements

• Comparison method to sort via the Comparable interface
public interface Comparable {

public int compareTo(Object o);

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
17



Comparable: Example

• Suppose we have an array of names, where each name consists of a 
last name and a first name
public class Name implements Comparable {

String lastName, firstName;

public Name(String lastName, String firstName) {

…

}

int compareTo(Object o) {

…

}

}

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
18



Comparable: Example

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
19



Type hierarchies

• Subtype-to-supertype conversion happens automatically

• However, supertype-to-subtype conversion requires an explicit cast 
• Down-casting

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
20

Object

Comparable

Name



Interfaces in AWT package

• Interfaces in java.lang.awt
interface ActionListener {

void actionPerformed(ActionEvent e);

}

• Button objects, among others, can have action listeners:
addActionListener(ActionListener)

removeActionListener(ActionListener)

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
21



Interfaces in AWT package (continued)

• Any object that implements the ActionListener interface can add 
itself as a listener for a button

• Suppose we had an animation with bouncing balls, pendulums, 
rotating spirals, etc. All of them can be listeners for a Stop button

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
22



Interfaces: Pros and Cons

• Pro: Classes can implement any number of interfaces

• Con: Interfaces contain no code, only declarations of methods

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
23

DBops

LinearDB TreeDB



Code sharing

• Suppose we want both LinearDB and TreeDB to have the following 
extra methods:
void addSeveral (int keys[])

boolean findOneOf (int keys[])

• Both with have similar-looking code. Should we repeat it in both 
classes?

26.09.2023
2023/2024(1) – Object Oriented Programming | MM Irfan 

Subakti
24


	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #5b Interface
	Slide 2: Method: Multiple versions?
	Slide 3: Method: Multiple versions? (continued)
	Slide 4: Implementing an Interface
	Slide 5: Implementation (continued)
	Slide 6: Implementation (continued)
	Slide 7: Interface: Usage
	Slide 8: Interface: Database project example
	Slide 9: LinearDB & TreeDB classes
	Slide 10: DBClient class
	Slide 11: Database project using Interface
	Slide 12: Using Interface
	Slide 13: Update DBClient class
	Slide 14: Type hierarchies
	Slide 15: Interfaces in Java API
	Slide 16: Interfaces in Java API (continued)
	Slide 17: Comparable
	Slide 18: Comparable: Example
	Slide 19: Comparable: Example
	Slide 20: Type hierarchies
	Slide 21: Interfaces in AWT package
	Slide 22: Interfaces in AWT package (continued)
	Slide 23: Interfaces: Pros and Cons
	Slide 24: Code sharing

