
2023/2024(1)
EF234302 Object Oriented Programming

Lecture #10

Collections: More & Immutability
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти

Iterators

• Iterators are objects that allow us to iterate (or examine each element)
in a collection in turn

• They are useful because otherwise we don’t have the ability to look at
contents of a collection if the collection is not a list
• Because of the ordered nature of lists – we can examine the element at each index

// This code will print out all the strings in the collection

Collection<String> myCollection = new ArrayList<String>();

myCollection.add("Luffy, Monkey D.");

myCollection.add(“Zoro, Roronoa");

myCollection.add(“Robin, Nico");

Iterator<String> iter = myCollection.iterator();

while (iter.hasNext()) {

System.out.println(iter.next());

}

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
2

Iterators (continued)

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
3

Iterators (continued)

• The only problem with iterators is that they only allow us read the
contents of the underlying collection and not change it. If we have a
mutable object then we can change the object, but cannot set a new
object in its place. For example, the following will not change the
contents of the collection.

// This code will print out all the strings in the collection

Collection<String> myCollection = new ArrayList<String>();

myCollection.add("Luffy, Monkey D.");

Iterator<String> iter = myCollection.iterator();

while (iter.hasNext()) {

String element = iter.next();

element += " and Zoro, Roronoa";

}

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
4

Iterators (continued)

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
5

Iterators (continued)

• Instead we would have to create a new collection and add element to
the new collection as we iterated over the contents of the old
collection.

• Additionally the iterator class does not allow us to iterate
backwards over a collection, only forwards.

• Hence, if we wanted to implement removeDuplicates (as in the
question from previous assignment) using collections and also in an
imperative way we would have to use a variable to remember the
previous element and a new collection to put the unique elements in.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
6

Iterators (continued)

public static <T> List<T> removeDuplicatesFromSortedList(List<T> input) {

// Note that this method can’t cope with removing duplicate null values

T previous = null;

List<T> result = new ArrayList<T>();

result.add(input.get(0));

Iterator<T> iter = input.iterator();

while (iter.hasNext()) {

T current = iter.next();

if (previous != null && !previous.equals(current)) {

result.add(current);

}

previous = current;

}

return result;

}

• ListIterator. There is one exception to these rules, and that is for Lists. Lists also provide a
ListIterator that allows us to add, set, remove and iterate backwards (as well as forwards) over
the list. We can find out more from the Java API.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
7

Iterators (continued)

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
8

Iterable

• All classes that implement Collection also implement Iterable as
well. Any class that implements the Iterable interface can be more easily
iterated over using the enhanced for-loop construct. The enhanced for
loop is similar to the normal for loop, but only allows iterating over the
elements in a collection in a forward manner and one at a time.
Collection<Integer> c = new ArrayList<Integer>();

c.add(3);

c.add(2);

c.add(4);

int sum = 0;

for (Integer i : c) {

sum += i;

}

System.out.println("sum = " + sum);

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
9

Concurrent modification

• We’ve already been warned that we cannot modify collection whilst iterating over it
(because the iterator does not provide sufficient methods to access it).
• List: add & remove→ it cannot, but set→ it can!

• This is also because if we modify the contents of a collection then it usually does not
make sense which should be the next object to be retrieved by the iterator.

• For instance, if iterating over the list [”a”, ”b”, ”c”, ”d”, ”e”] and the iterator has just
returned ”b” and so next element should be ”c” at index 2
• Then what should happen if we removed ”a” from the beginning of the list?

• Should the iterator still return ”c” (now at index 1), or should it return the element at index 2 (”d”)?

• The answer is unclear, and so instead the iterator throws a runtime exception of the type
”ConcurrentModificationException”.

• This is something to be aware of, and to know why this exception has been thrown
(because the list was modified whilst the list was being iterated over). We should also be
aware that this behaviour is not fool proof and so should not be relied upon.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
10

Concurrent modification (cont’d)

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
11

Comparable & comparators

• When using lists, it can often be useful to sort all the elements into order
• This can be done by using the Collections.sort method
• However, not all lists can be sorted
• To sort a list then the generic type of the list must either implement
Comparable or we must have written a Comparator class for the objects
we wish to sort

• We saw the Comparable interface weeks ago, when we looked at the
bounded types for generics. Indeed, the Collections.sort method uses
bounded types to restrict the lists that it can sort

public static <E extends Comparable<E>> void sort(List<E> list) {
. . .

}

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
12

Comparable & comparators (continued)

• All the Comparator interface is saying is that this class has an inherent
order and knows how to sort itself.

• But what if it is not obvious how a class should be sorted – then including
the Comparable interface would confusing more than anything
• For example, with student records: Each student has a first name, last name, age,

degree course, marks, etc.
• But if I had a list students, how should they be sorted?
• Well, it depends on what information I need to know from that list

• And this is why the Comparator interface exists

• Comparators are able to compare two instances of a class and say which
order they should come in
• For example, we could write an age Comparator for the student class

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
13

Comparable & comparators (continued)

public class AgeComparator implements Comparator<Student> {

@Override

public int compare(Student s1, Student s2) {

if (s1 == s2) {

return 0; // The same age

} else if (s1 == null) {

return −1; // s1 should come before s2

} else if (s2 == null) {

return 1; // s1 should come after s2

} else {

return s1.getAge() − s2.getAge();

}

}

}

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
14

Comparable & comparators (continued)

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
15

First name, last name: Sorting

• Exercise: How would we write a comparator that orders the students
alphabetically by their full name (first name compared first, then last name)?

• Case 1
1. Luffy, Monkey D.
2. Garp, Monkey D.
3. Dragon, Monkey D.
4. Rouge, Portgas D.
5. Ace, Portgas D.

• Case 2
1. Luffy, Monkey D.
2. Rouge, Portgas D.
3. Garp, Monkey D.
4. Ace, Portgas D.
5. Dragon, Monkey D.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
16

First name, last name: Code

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
17

Last name, first name: Sorting

• Exercise: How would we write a comparator that orders the students
alphabetically by their full name (last name compared first, then first name)?

• Case 1
1. Luffy, Monkey D.
2. Garp, Monkey D.
3. Dragon, Monkey D.
4. Rouge, Portgas D.
5. Ace, Portgas D.

• Case 2
1. Luffy, Monkey D.
2. Rouge, Portgas D.
3. Garp, Monkey D.
4. Ace, Portgas D.
5. Dragon, Monkey D.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
18

Last name, first name: Code

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
19

Last name + first name: Sorting

• Exercise: How would we write a comparator that orders the students
alphabetically by their full name (last name + first name)?

• Case 1
1. Luffy, Monkey D.
2. Garp, Monkey D.
3. Dragon, Monkey D.
4. Rouge, Portgas D.
5. Ace, Portgas D.

• Case 2
1. Luffy, Monkey D.
2. Rouge, Portgas D.
3. Garp, Monkey D.
4. Ace, Portgas D.
5. Dragon, Monkey D.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
20

Last name + first name: Code

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
21

Last name + first name: Code (continued)

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
22

Last name + first name: Output

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
23

Shallow & deep copying

• When programming it can be useful to create copies of objects

• However, when copying an object the issue of shallow copying and
deep copying arises

• The issue can most easily be demonstrated with lists
List<Person> people = new ArrayList<Person>();

people.add(new Person("Usopp"));

people.add(new Person("Nami")) ;

List<Person> copy = copyList(people);

Person p = copy.get(0);

p.setName("Brook");

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
24

Shallow & deep copying (continued)

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
25

• Now its very easy to guess what the copied list should look like

– [Person(Brook), Person(Nami)] , but what should the original list look like?

• Most people would probably expect the original list to look like

– [Person(Usopp), Person(Nami)] .

• However, also feasible is – [Person(Brook), Person(Nami)] .

• But why is this?

• The reason is that second list (copied list) is only a shallow copy.

• That is, it has copied the order of the objects, but the actual objects in the list are the same
objects.

• Hence, any change to the persons in the original list will also be reflected in the copied list and
vice versa.

• If the original list remains unchanged then a deep copy has to be performed.

• That is the persons themselves were also copied.

Shallow copying

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
26

Deep copying

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
27

Mutability vs immutability

• Though we may not know it, we have already encountered mutable and
immutable objects in Java.

• Simply put, an immutable object cannot have its state changed after it is
created (remember an object is different to a variable).

• One example of immutable objects are Strings.

• Once created a String cannot be modified, though we can still create new
Strings as and when needed.

• Mutable objects, on the other hand, can have their state altered once
created.

• There are a couple of immutable collection classes in the Collections API.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
28

Mutability vs immutability (continued)

• The Java website states that ”Maximum reliance on immutable objects is widely
accepted as a sound strategy for creating simple, reliable code. The benefits of
immutable objects”.
• Why would this be? What possible benefits can arise from not being allowed to modify an object?

• The simplest benefit is that immutable objects make for good keys in a HashMap
(remember when it was explained that objects should never change whilst they are in
use as keys in a map).

• Another point is that immutable objects mean we do not need to worry what will
happen when we pass an object to another method.
• For instance, if we pass a List to a method called medianAverage then it has to sort the list to

find the median or it may make its own copy of the list and sort that list.
• The former behaviour is undesired as the order of the list might hold significance. However, with

strings this is not a problem as the String class is immutable. The method that was passed the
string can create new strings based on the string parameter, but it cannot alter the string we gave
it.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
29

Mutability vs immutability (continued)

• One last thing, but important point is that immutable objects are very useful in
threaded applications (we’ll learn more about Threads later).

• That is if we wish to share objects between threads (think of a thread as
another bit of code to working at the same time as our main program) then
making our object immutable is a safe way to share the object.

• A simple analogy is to imagine a global marksheet which all the lecturers and TAs
input your labs/assignments marks to. Now imagine if two TAs open this file at
the same time and begin editing the document. TA A finishes first and saves the
file, then TA B finishes and saves his changes (thus overwriting TA A’s changes and
so the marks file is left in a broken state).

• Programmers sometimes feel that creating new objects is costly. Now, whilst
there is some overhead, Java is very efficient at creating and disposing of objects,
especially small short lived objects (immutable objects normally are short lived
since they can not be modified).

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
30

Mutability vs immutability (continued)

• Exercise: Which of the following would it be useful to make mutable
and which to make immutable and why?
• Colour

• Bank account

• A 2D co-ordinate or ”point”

• The Integer class (a class designed to hold int values – useful for generics as
you cannot have generics of primitive types).

• A student class that must have a name, DoB, address and ID number

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
31

Immutability: Practising

• Immutability can be enforced in two ways:
• The simplest way is to not provide any setter methods for our class.

• A more robust way is to declare fields final. Final is an additional keyword
that is used during the declaration of a field or variable that lets the compiler
know that the value of a variable is not allowed to be changed after it is first
assigned to or that the value of a field is not allowed to be assigned outside of
a constructor or its declaration.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
32

Immutability: Practising (continued)

• For an object to be fully immutable then its fields must also be
comprised of primitives or immutable objects.

• This is the case with the Student class as id is an int (primitive) and
String is immutable.

20.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
33

	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #10 Collections: More & Immutability
	Slide 2: Iterators
	Slide 3: Iterators (continued)
	Slide 4: Iterators (continued)
	Slide 5: Iterators (continued)
	Slide 6: Iterators (continued)
	Slide 7: Iterators (continued)
	Slide 8: Iterators (continued)
	Slide 9: Iterable
	Slide 10: Concurrent modification
	Slide 11: Concurrent modification (cont’d)
	Slide 12: Comparable & comparators
	Slide 13: Comparable & comparators (continued)
	Slide 14: Comparable & comparators (continued)
	Slide 15: Comparable & comparators (continued)
	Slide 16: First name, last name: Sorting
	Slide 17: First name, last name: Code
	Slide 18: Last name, first name: Sorting
	Slide 19: Last name, first name: Code
	Slide 20: Last name + first name: Sorting
	Slide 21: Last name + first name: Code
	Slide 22: Last name + first name: Code (continued)
	Slide 23: Last name + first name: Output
	Slide 24: Shallow & deep copying
	Slide 25: Shallow & deep copying (continued)
	Slide 26: Shallow copying
	Slide 27: Deep copying
	Slide 28: Mutability vs immutability
	Slide 29: Mutability vs immutability (continued)
	Slide 30: Mutability vs immutability (continued)
	Slide 31: Mutability vs immutability (continued)
	Slide 32: Immutability: Practising
	Slide 33: Immutability: Practising (continued)

