
2023/2024(1)
EF234302 Object Oriented Programming

Lecture #11

Thread, Race & Deadlock-Livelock
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти

Thread: What is that?

• A thread is basically a piece of code that is concurrently executing with our main program

• We have already implicitly used threads in our assignments ago

• When we write an ActionListener, its actionPerformed method, when called as a
result of the user interacting with the GUI, is executed in a separate thread to our main
program (this thread is called the Event Dispatch Thread or EDT)

• Threads are massively useful and can simplify the design of a program. For instance,
when writing our GUI for the predictive text assignment, there was no need to
periodically check if the user had pressed a button or not. We wrote code that setup our
program and code that knew what to do when a button was clicked and let another
thread deal with the complexities of mouse I/O.

• As an analogy, we could think of threads as multitasking for our computer. The JVM
allocates a small amount of time to every thread that’s running in some order, switching
between time allocation for each thread in turn. This gives the appearance that the
computer is performing several tasks ‘at once’, when in fact, just one is running at any
time.

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
2

Thread: More about

• Java is a multi-threaded programming language which means we can
develop multi-threaded program using Java.

• Threads allows a program to operate more efficiently by doing
multiple things at the same time.

• Threads can be used to perform complicated tasks in the background
without interrupting the main program.

• Concept of threads arise due to multiprocessor architecture in
distributed systems.
• Internet, mainframe servers, quantum computers are examples of distributed

computing systems where inter-process communication arise between
multiple processing units in which threads are used

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
3

Thread: Why?

• When Swing, servlets, Remote Method Invocation (RMI), or
Enterprise JavaBeans (EJB) – Jakarta Enterprise Beans (JEB)
technologies are used, we may already be using threads without
realising it.

• So, why? Because by using threads in our Java programs:
• Make the User Interface (UI) more responsive
• Take advantage of multiprocessor systems
• Simplify modelling
• Perform asynchronous or background processing

• Parallelism in Java program →multiple threads, take full advantage of
multiple cores by serving more clients and serving them faster

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
4

Parent-Child

• The example we will use takes the following analogy. We have a parent process, which
directs a number of child processes to independently counting a number. It tells them to
do this indefinitely, until it decides otherwise. We’ll begin with a non-threaded version of
the processes, which will make the problem apparent. The Parent class:
public class Parent {

public static void main(String args[]) {

System.out.println("Parent started");

System.out.println("Parent has started Child: Monkey D. Luffy");

Child one = new Child("Monkey D. Luffy");

one.begin();

System.out.println("Parent has started Child: Portgas D. Ace");

Child two = new Child("Portgas D. Ace");

two.begin();

}

}

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
5

Parent-Child (continued)

• The Child class can be seen below.
public class Child {

private String name;

public Child(String name) {

this.name = name;

}

public void begin() {

int i = 0;

while (true) {

System.out.println(name + " has counted “ +(i++));

}

}

}

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
6

Parent-Child (continued)

• When we run the Parent program, what will happen?

• Well, we’ll start the first child one, and tell it to call the begin method/function.

• Unfortunately, full control is now passed over to Child‘s one, which enters an infinite loop.

• We never get to start Child‘s two, because the first child, i.e., one, never stops.

• Furthermore, the Parent has no way to stop the first child, i.e., one!

• If we want both children to run indefinitely, we need some way to transfer control back to the parent.

• Threads are the solution.

• As we said earlier, more than one instance of a thread can run at once.

• If we make a class that implements Runnable, we can harness this power.

• The Runnable interface has a method run(), which is actually the part which can be run in parallel with other
threads.

• However, it is never called explicitly by the programmer. Instead, we pass our runnable object to the Thread class
and call start() — more on this later.

• First we need to override the run() method:

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
7

New Parent-Child

public class NewChild implements Runnable {

private String name;

public NewChild(String name) {

this.name = name;

}

@Override

public void run() {

Random r = new Random();

try {

int i = 0;

while (true) {

int rand = r.nextInt(2000);

System.out.println(name + " has counted to " + (i++)

+ " and will now sleep for " + rand + "ms");

Thread.sleep(rand);

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted; ending");

}

}

}

• Note that in this version, we increment i then wait for a random amount of time between 0 and 2 seconds. Now the NewParent can have
some control over the Child threads:

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
8

New Parent-Child (continued)

public class NewParent {

public static void main (String args[]) {

System.out.println("Parent started") ;

System.out.println("Parent is starting Child: Monkey D. Luffy");

NewChild one = new NewChild("Monkey D. Luffy");

Thread threadOne = new Thread(one);

threadOne.start();

System.out.println("Parent is starting Child: Portgas D. Ace");

NewChild two = new NewChild("Portgas D. Ace");

Thread threadTwo = new Thread(two);

threadTwo.start();

System.out.println("Parent will sleep for 10 seconds");

try {

Thread.sleep(10000);

System.out.println("Parent has woken up");

}

catch (InterruptedException e) {

System.out.println("Somebody has awaken the Parent" + e);

// This actually won’t happen.

}

finally {

// Interrupt children

threadOne.interrupt();

threadTwo.interrupt();

}

System.out.println("Parent ended");

}

}

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
9

New Parent-Child: Output

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
10

New Parent-Child: Explanation

• Let’s look at what’s happening.
• Each time the parent tells a thread object to start, it calls the run

method of its Runnable, and, importantly, control is passed back to the
Parent.

• That means that we can start both children, which will independently start
counting and sleeping for random amounts of time.

• The Parent wants to give the children ten seconds to count, and then
“stop” them, i.e., interrupt them.

• To program this, we use the command Thread.sleep(long millis),
which puts any thread “to sleep” for millis milliseconds.

• Note that although we haven’t said that Parent is a thread, implicitly it
is—it just happens that there are no other Parent threads running.

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
11

New Parent-Child: Explanation (continued)

• So, the parent waits for ten seconds.

• Now, we want it to interrupt the execution of the children.

• To do this, it calls the interrupt method on each child, which (if you look back at the NewChild
class) causes the child to exit the while loop and continue with whatever was below the try
block (as we catch an InterruptedException).

• Note that it is completely the child’s choice what to do when interrupted. We could have written
code which ignores this exception and loops again.

• The parent can only request that the child stops.

• In this case, when the children are interrupted, and an InterruptedException is thrown, the
child immediately stops.

• Note that we could also ask the child to stop when finished, i.e., see the next page.

• When we run the code, both children count independently, and the parent correctly stops them.

• However, this perfect execution may not always happen when we are dealing with a shared
resource.

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
12

New Parent-Child v02: Stop the children

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
13

New Parent-Child v02: Output

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
14

Race

• Consider the following. We have a number of thread children which all increment and
decrement a common counter:
public class Counter {

private int c = 0;

public void increment() {

c++;

}

public void decrement() {

c--;

}

public int get() {

return c;

}

}

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
15

Race (continued)

• Seems simple!

• Now, if we change each child to increment and immediately decrement the counter by one, a million
times.

• Because we know that the children will terminate eventually, we don’t need to interrupt them, the
parent can instead simply wait for the thread to finish, by calling its join() method

• What if we didn’t know if the thread would terminate?

• The parent will then just get the value of the counter.

• When run, there’s a problem!

• We should at the end get something like:
counter should be 0 and is 0

• But, in fact we get something like:
counter should be 0 and actually is 645

• What’s going on? Well, this is known as a race condition.

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
16

Race (continued)

• Let’s say we have two threads. The ‘correct’ flow of execution should be:

1. Child 1 increments counter

2. Child 1 decrements counter

3. Child 2 increments counter

4. . . .

• What happens is a little confusing. In order to increment the counter, the c++ operation first gets the value of c, and then
increases that value and stores it back in c. If we slow down what might go wrong, it should become clear:

1. Child 1 gets value of counter as 0

2. Child 2 gets value of counter as 0

3. Child 2 sets value of counter to be 1 (it should be 1)

4. Child 1 also sets value of counter to be 1 (it should be 2)

5. Child 2 gets value of counter as 1

6. Child 2 sets value of counter to be 0 (it should be 1)

7. Child 1 gets value of counter as 0

8. Child 1 sets value of counter as -1 (it should be 0)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
17

Parent-Child: Race

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
18

Parent-Child: Race (Output)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
19

Parent-Child: Race (Output)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
20

Parent-Child: Race (Output)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
21

Parent-Child: Race (Output)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
22

…

Race: Solution

• This is just for three children. Think about the problem extended to several children running a million times.

• The problem is that no one child has exclusive access to the counter at any one time, and the operation to
increment or decrement is not atomic (that is to say, it doesn’t happen in one go).

• Luckily, there are a couple of solutions to this.

• The simplest is to change the counter, so that its increment and decrement methods are synchronized.
This means that each thread accessing the counter must synchronise with other thread doing so, in a ‘one at
a time’ way:
public synchronized void increment() {

i++;

}

• We could also ask the thread itself to synchronise what it does. The terminology is slightly different:
synchronized(counter) {

counter.increment();

}

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
23

Race: Solution (continued)

• The later will need to rely on all threads correctly synchronizing on
the counter before accessing it.

• The counter next to the synchronized statement means that
threads must synchronise on the counter object.

• Adding either of these statements makes the necessary operations
atomic and accessible by only one thread at a time, and solves the
problem.

• In short, any object which will be accessed by two or more threads
and whose fields will be changed by one or methods should only be
accessed in synchronized blocks or methods.

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
24

Parent-Child: Synchronized

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
25

Parent-Child: Synchronized (Output)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
26

Parent-Child: Synchronized (Output)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
27

…

Deadlock & livelock

• We will talk about a different problem to do with synchronisation
between multiple threads accessing a number of resources:
• Deadlock. E.g., the dining philosopher problem

• Livelock. E.g., the situation of side-stepping to avoid walking into someone,
but they also side-step. Other example: sharing resource problem (see later).

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
28

Deadlock: Dining philosopher problem

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
29

• Five silent philosophers sit at a round table with bowls of spaghetti. Forks are
placed between each pair of adjacent philosophers.

• Each philosopher must alternately think and eat. However, a philosopher can only
eat spaghetti when they have both left and right forks. Each fork can be held by
only one philosopher at a time and so a philosopher can use the fork only if it is
not being used by another philosopher. After an individual philosopher finishes
eating, they need to put down both forks so that the forks become available to
others. A philosopher can only take the fork on their right or the one on their left
as they become available and they cannot start eating before getting both forks.

• Eating is not limited by the remaining amounts of spaghetti or stomach space; an
infinite supply and an infinite demand are assumed.

• The problem is how to design a discipline of behaviour (a concurrent algorithm)
such that no philosopher will starve; i.e., each can forever continue to alternate
between eating and thinking, assuming that no philosopher can know when
others may want to eat or think.

Dining philosopher: Code (HerongYang.com)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
30

Dining philosopher: Code (HerongYang.com)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
31

Dining philosopher: Output

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
32

Dining philosopher: Solution (Wikipedia)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
33

• Resource hierarchy solution
• Dijkstra: assign a partial order to the resources, i.e., the forks

• Arbitrator solution
• A philosopher can only pick up both forks or none by introducing an arbitrator

• Limiting the number of diners in the table
• William Stallings: allow a maximum of n-1 philosopher to sit down at any time

• Chandy/Misra solution
• Allow arbitrary agents to contend for an arbitrary number of resources
• Completely distributed, requires no central authority after initialisation
• Violates the requirement that philosophers don’t speak to each other

Livelock: Sharing resource problem (logicbig.com)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
34

• Two threads want to access a shared common resource via a Worker object but when they see
that other Worker (invoked on another thread) is also 'active', they attempt to hand over the
resource to other worker and wait for it to finish.

• If initially we make both workers active they will suffer from livelock.

Sharing resource problem: Code (logicbig.com)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
35

Sharing resource problem: Code (logicbig.com)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
36

Sharing resource problem: Solution (logicbig.com)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
37

• We can fix the issue by processing the common resource sequentially
rather than in different threads simultaneously.

• Just like deadlock, there's no general guideline to avoid livelock, but
we have to be careful in scenarios where we change the state of
common objects also being used by other threads, for example in
above scenario, the Worker object.

Thread: Another example

• Reference
• Deitel, H.M. and Deitel, P.J. (2002) Java: How to Program. Prentice Hall, 4th

Edition, Upper Saddle River, NJ, USA.

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
38

Thread: Life cycle

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
39

Producer-consumer (ProCon): Output

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
40

ProCon.java

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
41

UpdateThread.java

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
42

ProduceInteger.java

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
43

ConsumeInteger.java

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
44

HoldIntegerSynchronized.java

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
45

HoldIntegerSynchronized.java (cont’d)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
46

HoldIntegerSynchronized.java (cont’d)

28.11.2023
2023/2024(1) – Object Oriented Programming | MM Irfan

Subakti
47

	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #11 Thread, Race & Deadlock-Livelock
	Slide 2: Thread: What is that?
	Slide 3: Thread: More about
	Slide 4: Thread: Why?
	Slide 5: Parent-Child
	Slide 6: Parent-Child (continued)
	Slide 7: Parent-Child (continued)
	Slide 8: New Parent-Child
	Slide 9: New Parent-Child (continued)
	Slide 10: New Parent-Child: Output
	Slide 11: New Parent-Child: Explanation
	Slide 12: New Parent-Child: Explanation (continued)
	Slide 13: New Parent-Child v02: Stop the children
	Slide 14: New Parent-Child v02: Output
	Slide 15: Race
	Slide 16: Race (continued)
	Slide 17: Race (continued)
	Slide 18: Parent-Child: Race
	Slide 19: Parent-Child: Race (Output)
	Slide 20: Parent-Child: Race (Output)
	Slide 21: Parent-Child: Race (Output)
	Slide 22: Parent-Child: Race (Output)
	Slide 23: Race: Solution
	Slide 24: Race: Solution (continued)
	Slide 25: Parent-Child: Synchronized
	Slide 26: Parent-Child: Synchronized (Output)
	Slide 27: Parent-Child: Synchronized (Output)
	Slide 28: Deadlock & livelock
	Slide 29: Deadlock: Dining philosopher problem
	Slide 30: Dining philosopher: Code (HerongYang.com)
	Slide 31: Dining philosopher: Code (HerongYang.com)
	Slide 32: Dining philosopher: Output
	Slide 33: Dining philosopher: Solution (Wikipedia)
	Slide 34: Livelock: Sharing resource problem (logicbig.com)
	Slide 35: Sharing resource problem: Code (logicbig.com)
	Slide 36: Sharing resource problem: Code (logicbig.com)
	Slide 37: Sharing resource problem: Solution (logicbig.com)
	Slide 38: Thread: Another example
	Slide 39: Thread: Life cycle
	Slide 40: Producer-consumer (ProCon): Output
	Slide 41: ProCon.java
	Slide 42: UpdateThread.java
	Slide 43: ProduceInteger.java
	Slide 44: ConsumeInteger.java
	Slide 45: HoldIntegerSynchronized.java
	Slide 46: HoldIntegerSynchronized.java (cont’d)
	Slide 47: HoldIntegerSynchronized.java (cont’d)

