2023/2024(1)
EF234302 Object Oriented Programming

Lecture #11

Thread, Race & Deadlock-Livelock

Misbakhul Munir IRFAN SU BAKTI

=) f J1 N
muesacyn vy UP@AH CyBaKTH

Thread: What is that?

* Athread is basically a piece of code that is concurrently executing with our main program
* We have already implicitly used threads in our assignments ago

* When we write an ActionlListener, its actionPerformed method, when called as a
result of the user interacting with the GUI, is executed in a separate thread to our main
program (this thread is called the Event Dispatch Thread or EDT)

* Threads are massively useful and can simplify the design of a program. For instance,
when writing our GUI for the predictive text assignment, there was no need to
periodically check if the user had pressed a button or not. We wrote code that setup our
program and code that knew what to do when a button was clicked and let another
thread deal with the complexities of mouse 1/0O.

* As an analogy, we could think of threads as multitasking for our computer. The JVM
allocates a small amount of time to every thread that’s running in some order, switching
between time allocation for each thread in turn. This gives the appearance that the
computer is performing several tasks ‘at once’, when in fact, just one is running at any
time.

Thread: More about

 Java is a multi-threaded programming language which means we can
develop multi-threaded program using Java.

* Threads allows a program to operate more efficiently by doing
multiple things at the same time.

* Threads can be used to perform complicated tasks in the background
without interrupting the main program.

* Concept of threads arise due to multiprocessor architecture in
distributed systems.

* Internet, mainframe servers, quantum computers are examples of distributed
computing systems where inter-process communication arise between
multiple processing units in which threads are used

28.11.2023 2023/2024(1) — Object Orsligi;(igiProgrammlng | MM Irfan

Thread: Why?

* When Swing, servlets, Remote Method Invocation (RMl), or
Enterprise JavaBeans (EJB) — Jakarta Enterprise Beans (JEB)
technologies are used, we may already be using threads without
realising it.

* So, why? Because by using threads in our Java programs:
* Make the User Interface (Ul) more responsive
* Take advantage of multiprocessor systems
* Simplify modelling
* Perform asynchronous or background processing

e Parallelism in Java program = multiple threads, take full advantage of
multiple cores by serving more clients and serving them faster

Parent-Child

 The example we will use takes the following analogy. We have a parent process, which
directs a number of child processes to independently counting a number. It tells them to
do this indefinitely, until it decides otherwise. We’ll begin with a non-threaded version of
the processes, which will make the problem apparent. The Parent class:
public class Parent {

28.11.2023

public static void main (String args|[]) {

System.out.println ("Parent started");

System.out.println ("Parent has started Child: Monkey D. Luffy");
Child one = new Child ("Monkey D. Luffy");

one.begin () ;

System.out.println ("Parent has started Child: Portgas D. Ace");
Child two = new Child ("Portgas D. Ace");

I] Parentjava

two. begln () ’ 1 public class Parent {
28 public static void main(String args[]) {
3 System.out.println("Parent started");
System.out.println("Parent has started Child: Monkey D. Luffy");
5 Child one = new Child("Monkey D. Luffy");
6 one.begin();
7 System.out.println("Parent has started Child: Portgas D. Ace");
8 Child two = new Child("Portgas D. Ace");
2023/2024(1) — Object Oriented Programming o two.begin();
Subakti 10 ¥

11 }

Parent-Child (continued)

1] Childjava
1 public class Child {

2 private String name;
. 3e public Child(String name) {
* The child class can be seen below. . this.nane = nane;
i . 5 ¥
public class Child { 6= public veid begin() {
. . 7 int i = 9;
private String name; 8 while (true) {
pUbliC Child (String name) | 9 System.out. println(name + " has counted " + (i++));
. 10 } gL Problems @ Javadoc [, Declaration & Console x
thls Thame = name ; 11 } Parent [Java Application] D:\Program'Java'JDI\bin\javaw.exe (27
12} Monkey D. Luffy has counted 209284
} Monkey D. Luffy has counted 209285
Monkey D. Luffy has counted 209286
publlc void begin () | Monkey D. Luffy has counted 209287
Monkey D. Luffy has counted 289288
int 1 = 0; Monkey D. Luffy has counted 209289
Monkey D. Luffy has counted 289290
while (true) { Monkey D. Luffy has counted 209251
Monkey D. Luffy has counted 209292
System.out.println(name + " has counted “ + (1++)) ; Monkey D. Luffy has counted 209293
Monkey D. Luffy has counted 209294
} Monkey D. Luffy has counted 209295
Monkey D. Luffy has counted 209296
} Monkey D. Luffy has counted 209297
Monkey D. Luffy has counted 209298
} Monkey D. Luffy has counted 209299
Monkey D. Luffy has counted 209300
Monkey D. Luffy has counted 289301
Monkey D. Luffy has counted 209302
58112023 2023/2024(1) — Object Oriented Programming | MM Irfan Monkey D. Luffy has CﬁgntEd 209303

Subakti

Parent-Child (continued)

* When we run the Parent program, what will happen?

* Well, we'll start the first child one, and tell it to call the begin method/function.

* Unfortunately, full control is now passed over to Child’s one, which enters an infinite loop.

* We never get to start Child‘s two, because the first child, i.e., one, never stops.

* Furthermore, the Parent has no way to stop the first child, i.e., one!

* If we want both children to run indefinitely, we need some way to transfer control back to the parent.
* Threads are the solution.

* As we said earlier, more than one instance of a thread can run at once.

e If we make a class that implements Runnable, we can harness this power.

. T|:]e R(tjmnable interface has a method run (), which is actually the part which can be run in parallel with other
threads.

* However, it is never called explicitly by the programmer. Instead, we pass our runnable object to the Thread class
and call start () — more on this later.

* First we need to override the run () method:

1] MewChildjava
1 import java.util.Random;
2 public class NewChild implements Runnable {

3 private String name;
* 4e public NewChild(String name) {
New Parent-Cni P b e = e
6 ¥
7e @Override
8 public void run() {
9 Random r = new Random();
public class NewChild implements Runnable { 10 try {
private String name; 11 int 1 = 0;
public NewChild (String name) | 12 while (true) {
this.name = name; 13 int rand = r.pextInt(zeeej; .
) 14 System.out.pr}ntln(name + " has counted to " + (i++)
Qoverride 15 + " and will now sleep for " + rand + "ms");
] i 16 Thread.sleep(rand);
public void run() { 17 }
Random r = new Random(); 18 } catch (InterruptedException e) {
try { 19 System.out.println(name + " interrupted; ending");
int i = 0; 20 }
while (true) { 21 ¥
int rand = r.nextInt (2000); 22}

System.out.println(name + " has counted to " + (i++)
+ " and will now sleep for " + rand + "ms");
Thread.sleep (rand) ;
}
} catch (InterruptedException e) {
System.out.println (name + " interrupted; ending");

}

* Note that in this version, we increment i then wait for a random amount of time between 0 and 2 seconds. Now the NewParent can have
some control over the child threads:

2023/2024(1) — Object Oriented Programming | MM Irfan

28.11.2023 Subakti

New Parent-Child (continued

public class NewParent ({

28.11.2023

public static void main (String args[]) {

System.out.println ("Parent started") ;

System.out.println ("Parent is starting Child: Monkey D. Luffy");

NewChild one = new NewChild ("Monkey D. Luffy");
Thread threadOne = new Thread (one) ;
threadOne.start () ;
System.out.println("Parent is starting Child: Portgas D. Ace");
NewChild two = new NewChild ("Portgas D. Ace");
Thread threadTwo = new Thread (two) ;
threadTwo.start () ;
System.out.println("Parent will sleep for 10 seconds");
try {
Thread.sleep (10000) ;
System.out.println("Parent has woken up");
}

catch (InterruptedException e) {

System.out.println ("Somebody has awaken the Parent" + e);

// This actually won’t happen.
}
finally {
// Interrupt children
threadOne.interrupt () ;
threadTwo.interrupt() ;
}

System.out.println ("Parent ended");

2023/2024(1) — Object Oriented Programming | MM Irfan

I| MewParentjava X
1 public ¢
28 publ

19
20

21

22

23

24

25

26

27 }
28 }

Subakti

lass NewParent {
ic static void main (String args[]) {
System.out.println("Parent started”) ;
System.out.println("Parent is starting Child: Monkey D. Luffy");
NewChild one = new NewChild("Monkey D. Luffy");
Thread threadOne = new Thread(one);
threadOne.start();
System.out.println("Parent is starting Child: Portgas D. Ace");
NewChild two = new NewChild("Portgas D. Ace");
Thread threadTwo = new Thread(two);
threadTwo.start();
System.out.println("Parent will sleep for 1@ seconds");
try {
Thread.sleep(10000);
System.out.println("Parent has woken up");
h
catch (InterruptedException e) {
System.out.println("Somebody has awaken the Parent” + e);
// This actually won’t happen.

¥

finally {
// Interrupt children
threadOne.interrupt();
threadTwo. interrupt();

¥

System.out.println("Parent ended");

New Parent-Child: Output

. Problems @ Javadoc [&), Declaration & Console X 3%

<terminated> MewParent [Java Application] D:\Program\Java'JDK\bin\javaw.exe (27 Nov 2021, 20:35:05 - 20:35:16)
Parent started

Parent is starting Child: Monkey D. Luffy

Parent is starting Child: Portgas D. Ace

Parent will sleep for 10 seconds

Portgas D. Ace has counted to @ and will now sleep for 479ms
Monkey D. Luffy has counted to @ and will now sleep for 545ms
Portgas D. Ace has counted to 1 and will now sleep for 379ms
Monkey D. Luffy has counted to 1 and will now sleep for 817ms
Portgas D. Ace has counted to 2 and will now sleep for 61@ms
Monkey D. Luffy has counted to 2 and will now sleep for 235ms
Portgas D. Ace has counted to 3 and will now sleep for 379ms
Monkey D. Luffy has counted to 3 and will now sleep for 1292ms
Portgas D. Ace has counted to 4 and will now sleep for 446ms
Portgas D. Ace has counted to 5 and will now sleep for 1355ms
Monkey D. Luffy has counted to 4 and will now sleep for 208ms
Monkey D. Luffy has counted to 5 and will now sleep for 174ms
Monkey D. Luffy has counted to 6 and will now sleep for 101@ms
Portgas D. Ace has counted to 6 and will now sleep for 760@ms
Monkey D. Luffy has counted to 7 and will now sleep for 1377ms
Portgas D. Ace has counted to 7 and will now sleep for 419ms

2023/2024(1) — Object Oriented Programming | MM Irfan

28.11.2023

Portgas D. Ace has counted to 8 and will now sleep for 1647ms
Monkey D. Luffy has counted to 8 and will now sleep for 605ms
Monkey D. Luffy has counted to 9 and will now sleep for 612ms
Portgas D. Ace has counted to 9 and will now sleep for 592ms
Monkey D. Luffy has counted to 10 and will now sleep for 1848ms
Portgas D. Ace has counted to 18 and will now sleep for 1867ms
Monkey D. Luffy has counted to 11 and will now sleep for 768ms
Portgas D. Ace has counted to 11 and will now sleep for 968ms
Monkey D. Luffy has counted to 12 and will now sleep for 1483ms
Portgas D. Ace has counted to 12 and will now sleep for 442ms
Parent has woken up

Parent ended

Monkey D. Luffy interrupted; ending

Portgas D. Ace interrupted; ending

10

New Parent-Child: Explanation

* Let’s look at what’s happening.

* Each time the parent tells a thread object to start, it calls the run
method of its Runnable, and, importantly, control is passed back to the
Parent.

* That means that we can start both children, which will independently start
counting and sleeping for random amounts of time.

* The Parent wants to give the children ten seconds to count, and then
“stop” them, i.e., interrupt them.

* To program this, we use the command Thread.sleep (long millis),
which puts any thread “to sleep” for mi11is milliseconds.

* Note that although we haven’t said that Parent is a thread, implicitly it
is—it just happens that there are no other Parent threads running.

New Parent-Child: Explanation (continued)

* So, the parent waits for ten seconds.
* Now, we want it to interrupt the execution of the children.

* To do this, it calls the interrupt method on each child, which (if you look back at the NewChild
class) causes the child to exit the while loop and continue with whatever was below the try
block (as we catch an InterruptedException).

* Note that it is completely the child’s choice what to do when interrupted. We could have written
code which ignores this exception and loops again.

* The parent can only request that the child stops.

* In this case, when the children are interrupted, and an InterruptedException is thrown, the
child immediately stops.

* Note that we could also ask the child to stop when finished, i.e., see the next page.
* When we run the code, both children count independently, and the parent correctly stops them.

* However, this perfect execution may not always happen when we are dealing with a shared
resource.

New Parent-Child vO2: Stop the children

il NewChild2java
1 import java.util.Random;
2 public class NewChild2 implements Runnable {

3 private String name;

4 private boolean stopStatus= false;

5 public NewChild2(String name) {

6 this.name = name;

7 ¥

8s @Override

9 public void run() {
10 Random r = new Random();
11 try {
12 int i = 9;
13 while (!stopStatus) {
14 int rand = r.nextInt(2e00);
15 System.out.println(name + " has counted to " + (i++)
16 + " and will now sleep for ™ + rand + "ms");
17 Thread.sleep(rand);
18 }
19 } catch (InterruptedException e) {
20 System.out.println(name + " interrupted; ending");
21 }
22 }
23e public wvoid staop() {
24 stopStatus = true;
25 }
26 }

28.11.2023

I] MewParent2java
1 public class NewParent2 {

2e
3

20
21
22
23
24
25
26
27
28 }

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

public static void main (String args[]) {
System.out.println("Parent started”) ;
System.out.println("Parent is starting Child: Monkey D. Luffy");
NewChild2 one = new NewChild2("Monkey D. Luffy");
Thread threadOne = new Thread(one);
threadOne.start();
System.out.println("Parent is starting Child: Portgas D. Ace™);
NewChild2 two = new NewChild2("Portgas D. Ace");
Thread threadTwo = new Thread(two);
threadTwo.start();
System.out.println("Parent will sleep for 1@ seconds");
try {
Thread.sleep(10000);
System.out.println("Parent has woken up");
¥
catch (InterruptedException e) {
System.out.println("Somebody has awaken the Parent" + e);
// This actually won’t happen.

by

finally {
// Ask the children to stop themselves
one.stop();
two.stop();

by

System.out.println("Parent ended");

13

New Parent-Child vO2: Output

28.11.2023

g Problems @ Javadoc [&, Declaration & Console X 3%
<terminated> MewParent2 [Java Application] DAProgram\Java'JDK\bin\javaw.exe (27 Nowv 2021, 21:19:50 — 21:20:02)

Parent started
Parent is starting Child: Monkey D. Luffy
Parent is starting Child: Portgas D. Ace
Parent will sleep for 10 seconds
Monkey D. Luffy has counted to @ and will now sleep for 43ms
Portgas D. Ace has counted to ® and will now sleep for 702ms
Monkey D. Luffy has counted to 1 and will now sleep for 24ms
Monkey D. Luffy has counted to 2 and will now sleep for 762ms
Portgas D. Ace has counted to 1 and will now sleep for 1684ms
Monkey D. Luffy has counted to 3 and will now sleep for 1935ms
Portgas D. Ace has counted to 2 and will now sleep for 714ms
Monkey D. Luffy has counted to 4 and will now sleep for 446ms
Portgas D. Ace has counted to 3 and will now sleep for 133@ms
Monkey D. Luffy has counted to 5 and will now sleep for 734ms
Monkey D. Luffy has counted to 6 and will now sleep for 918ms
Portgas D. Ace has counted to 4 and will now sleep for 85@ms
Monkey D. Luffy has counted to 7 and will now sleep for 1072ms
Portgas D. Ace has counted to 5 and will now sleep for 1638ms
Monkey D. Luffy has counted to 8 and will now sleep for 1254ms
Portgas D. Ace has counted to 6 and will now sleep for 10832ms
Monkey D. Luffy has counted to 9 and will now sleep for 1436ms
Portgas D. Ace has counted to 7 and will now sleep for 1672ms
Monkey D. Luffy has counted to 10 and will now sleep for 11@7ms
Portgas D. Ace has counted to 8 and will now sleep for 1168ms
Monkey D. Luffy has counted to 11 and will now sleep for 1462ms
Parent has woken up
Parent ended

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

14

Race

e Consider the following. We have a number of thread children which all increment and
decrement a common counter:

public class Counter {

private int ¢ = 0;

public void increment () {
c++;

}

public void decrement () {
c-—;

}
public int get () {
return c;

2023/2024(1) — Object Oriented Programming | MM Irfan

28.11.2023 Subakti

15

Race (continued)

e Seems simple!

* Now, if we change each child to increment and immediately decrement the counter by one, a million
times.

* Because we know that the children will terminate eventually, we don’t need to interrupt them, the
parent can instead simply wait for the thread to finish, by calling its join () method

 What if we didn’t know if the thread would terminate?
* The parent will then just get the value of the counter.
* When run, there’s a problem!

* We should at the end get something like:
counter should be 0 and is O

* But, in fact we get something like:
counter should be 0 and actually 1s 645

* What'’s going on? Well, this is known as a race condition.

Race (continued)

& W N

00 N O U1 DA W N P

Let’s say we have two threads. The ‘correct’ flow of execution should be:

. Child 1 increments counter
. Child 1 decrements counter

. Child 2 increments counter

What happens is a little confusing. In order to increment the counter, the c++ operation first gets the value of ¢, and then
increases that value and stores it back in c. If we slow down what might go wrong, it should become clear:

. Child 1 gets value of counter as 0

. Child 2 gets value of counter as 0

. Child 2 sets value of counter to be 1 (it should be 1)

. Child 1 also sets value of counter to be 1 (it should be 2)
. Child 2 gets value of counter as 1

. Child 2 sets value of counter to be 0 (it should be 1)

. Child 1 gets value of counter as 0

. Child 1 sets value of counter as -1 (it should be 0)

I| Counterjava

Parent-Child: Race

1 package counter;

2 public class Counter {
private int c
public void increment() {

12

}

public void decrement() {

}

public int get() {

}

C++}

C--3

return c;

28.11.2023

I] Childjava
é 1 package counter;
2 public class Child implements Runnable {

3 private String name;

4 private Counter counter;

5e public Child(String name, Counter counter) {

6 this.name = name;

7 this.counter = counter;

8 ¥

9e @Override
10 public wvoid run() {
11 for (int i = @; i < 400; i++) {
12 System.out.println(name + " increments counter™);
13 counter.increment();
14 System.out.println(name + " decrements counter");
15 counter.decrement();
16 System.out.println(name + " gets value of counter as
17 + counter.get());
18 }
19 }

20 }

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

1| Parentjava x

1 package counter;
2 public class Parent {

3e public static void main (String args[])
4 throws InterruptedException {
5 System.out.println("Parent started”) ;
6 System.out.println("Parent is starting Child:
7 Counter counter = new Counter();
8 Child one = new Child("@1", counter);
9 Thread threadOne = new Thread(one);
10 threadOne.start();
11 System.out.println("Parent is starting Child:
12 Child two = new Child("@2", counter);
13 Thread threadTwo = new Thread(two);
14 threadTwo.start();
15 System.out.println("Parent is starting Child:
16 Child three = new Child("03", counter);
17 Thread threadThree = new Thread(three);
18 threadThree.start();
19 // Wait for threads to finish
20 threadOne.join();
21 threadTwo. join();
22 threadThree.join();
23 System.out.println("Parent ended");
24)
25 1}

18

01");

02");

e3");

Parent-Child: Race Output

01
02
02
01
03
03
03
03
03
03
03
03
03
03
03
02
02
03
01
01
01
01
01
o1

increments
increments
decrements
decrements
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
gets value
gets value
increments
decrements
gets value
increments
decrements

28.11.2023

counter
counter
counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
of counter
of counter
counter
counter
of counter
counter
counter

Problems @@ Javadoc |Q_ Declaration & Consc
<term|nated> Parent (1) [Java Application] D:\Program’,
Parent started

Parent is starting Child:
Parent is starting Child:
Parent is starting Child:

01
B2
03

as

as

as

as

as

as

as

03
03
02
02
02
02
03
03
01
01
01
01
01
01
01
01
03
02
02
02
02
02
02
02
03
03
03
03
03

increments
decrements
decrements
gets value
increments
decrements
gets value
increments
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
gets value
increments

2023/2024(1)

counter
counter
counter
of counter
counter
counter
of counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
of counter
counter

a5

a5

a5

a5

a5

a5

a5

a5
a5

a5

91
03
03
03
03
03
03
03
03
03
03
03
02
02
02
03
03
03
03
03
03
03
03
03
03
03
01
01

Subakti

1 decrements
gets value
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
increments
decrements

counter
of counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter
counter

— Object Oriented Programming | MM Irfan

a5

a5

a5

a5

a5

a5

a5

a5

a5

23
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counﬁer

as @

as @

as @

as @

as @

as @

as @

as @

as @

as @

19

Parent-Child: Race (Output

23
23
23
23
23
23
02
02
02
02
02
23
23
23
21
23
23
23
23
23
23
23
23
02
02
02
23
23
23

increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
increments
decrements
gets value
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements

28.11.2023

counted
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter
counter
of counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

as

as

as

as

as

as

as

as

as

<terminated> Parent (1) [Java Application] D:\Program’.
of counter as @

03
03
03
03
03
03
03
03
01
01
01
01
01
01
01
01
03
03
03
03
03
B2
B2
B2
B2
B2
03
01

gets value
increments
decrements
gets value
increments
decrements
gets value
increments
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
gets value
increments
increments
gets value

counter
counter
of counter
counter
counter
of counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
of counter
counter
counter

of counter as 1

as

as

as

as

as

as
as

as

01
01
03
02
02
03
03
03
01
01
01
01
01
01
03
03
03
03
03
03
03
03
03
03
03
03
03
02
02

increments
decrements
decrements
decrements
gets value
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements

counter
counter
counter
counter
of counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

a5
a5

a5

a5

a5

a5

a5

a5

a5

23
21
21
23
02
02
02
02
23
23
23
23
23
23
23
23
23
21
21
23
23
23
02
02
02
02
02
02

increments
gets value
increments
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
decrements
gets value
gets value
increments
decrements
increments
decrements
gets value
increments
decrements
gets value

counter
of counter
counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter
of counter
of counter
counter
counter
counter
counter
of counter
counter
counter
of counter

as @

as @

as 1
as 1

as 1

as 1

as @

as 1

as @

as @

20

Parent-Child: Race (Output

02
02
23
23
23
23
23
23
23
23
21
21
21
21
21
21
21
23
02
02
23
23
21
21
21
23
23
23
23

increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements

28.11.2023

counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

as

as

as

as

as

as

as

as

as

02
02
02
02
02
02
02
02
02
02
02
23
23
21
23
23
23
23
23
23
23
23
23
23
23
23
23
23

decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

of counter as @

as

as

as

as
as

as

as

as

as

23
23
23
23
23
23
23
23
23
23
23
02
02
02
02
02
02
02
02
02
02
02
23
23
23
23
23
23
23

increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

as

as

as

as

as

as

as

as

as

03
03
03
03
03
01
03
03
03
03
03
03
03
03
03
03
02
02
02
02
02
02
02
02
02
02
02
03
03

increments
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
increments
decrements

counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter

a5

a5
a5

a5

a5

a5
a5

a5

a5

a5

21

Parent-Child: Race (Output

23
23
23
23
23
23
23
23
23
21
21
21
21
21
21
21
21
21
23
23
23
23
23
23
23
23
23
23

gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

28.11.2023

of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

as

as

as

as

as

as
as

as

as

as

03
03
03
03
03
03
03
03
02
02
02
02
02
03
03
03
01
01
01
01
01
01
01
01
03
03
02
02

increments
decrements
gets value
increments
decrements
gets value
increments
decrements
decrements
gets value
increments
decrements
gets value
gets value
increments
decrements
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
increments
decrements

counter
counter
of counter
counter
counter
of counter
counter
counter
counter
of counter
counter
counter
of counter
of counter
counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
counter

a5

a5

a5

a5

a5

a5

a5

a5

02
02
02
03
01
01
01
03
03
03
03
03
03
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

2023/2024(1) — Object Or 82
Subakti

gets value
increments
decrements
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

of counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

as

as

as

as

as

as

as

as

as

as

23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23

gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

Parent ended

of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

as @

as @

as @

as @

as @

as @

as @

as @

as @

as @

22

Race: Solution

e This is just for three children. Think about the problem extended to several children running a million times.

* The problem is that no one child has exclusive access to the counter at any one time, and the operation to
increment or decrement is not atomic (that is to say, it doesn’t happen in one go).

* Luckily, there are a couple of solutions to this.

* The simplest is to change the counter, so that its increment and decrement methods are synchronized.
This means that each thread accessing the counter must synchronise with other thread doing so, in a ‘one at
a time’ way:
public synchronized void increment () ({
i++;
}

* We could also ask the thread itself to synchronise what it does. The terminology is slightly different:
synchronized (counter) ({

counter.increment () ;

2023/2024(1) — Object Oriented Programming | MM Irfan

28.11.2023 Subakti

23

Race: Solution (continued)

* The later will need to rely on all threads correctly synchronizing on
the counter before accessing it.

* The counter next to the synchronized statement means that
threads must synchronise on the counter object.

* Adding either of these statements makes the necessary operations
atomic and accessible by only one thread at a time, and solves the
problem.

* In short, any object which will be accessed by two or more threads
and whose fields will be changed by one or methods should only be
accessed in synchronized blocks or methods.

Parent-Child: Synchronized

1| Parentjava

1 package counter;
2 public class Parent {

3_

.

25 1}

M| Counterjava X 7 Childjava X
1 package counter; § 1 package counter;
2 public class Counter { 2 public class Child implements Runnable {
3 private int c = @; 3 private String name;
4e public void increment() { 4 private Counter counter;
5 CH+)} 56 public Child(String name, Counter counter) {
6 } 6 this.name = name;
7e public void decrement() { 7/ this.counter = counter;
8 c--3 }
S } 9e @override
10e public int get() { 10 public void run() {
11 return c; 11 for (int i = @; i < 400; i++) {
12 } 12 System.out.println(name + " increments counter");
13 } 13 | synchronized (counter) { |
14 counter.increment();
15 System.out.println(name + " decrements counter");
16 counter.decrement();
17 System.out.println(name + " gets value of counter as
18 + counter.get());
19 1
20 }
21 }
22 }
28.11.2023 2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

public static wvoid main (String args[])
throws InterruptedException {
System.out.println("Parent started”) ;

System.out.println("Parent is starting Child:

Counter counter = new Counter();
Child one = new Child("®1", counter);
Thread threadOne = new Thread(one);
threadOne.start();

System.out.println{"Parent is starting Child:

Child two = new Child("82", counter);
Thread threadTwo = new Thread(two);
threadTwo.start();

System.out.println("Parent is starting Child:

Child three = new Child("e3", counter);
Thread threadThree = new Thread(three);
threadThree.start();

// Wait for threads to finish
threadOne. join();

threadTwo.join();

threadThree.join();
System.out.println("Parent ended");

25

01");

02");

03");

Parent-Child: Synchronized (Output

Problems @ Javadoc [E), Declaration & Conso

<terminated> Parent (1) [Java Application] D:\Prograrm’)

Parent started

Parent is starting Child:
Parent is starting Child:
Parent is starting Child:

01
02
01
03
01
01
03
03
03
01
01
01
02
02
02
01
01
01
01
01
01
03

increments
increments
decrements
increments
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements

28.11.2023

counter
counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

01

02

03

as 0

as 0

as 0

as 0

as 0

as 0

03
03
01
01
01
B2
B2
B2
01
01
01
03
03
03
01
01
01
B2
B2
B2
01
01
01
03
03

gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

a5

as

as

as

as

as

as

as

as

03
01
01
01
02
02
02
01
01
01
03
03
03
01
01
01
02
02
02
01
01
01
03
03
03
01

increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements

counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

as

as

as

as

as

as

as

as

21
21
02
02
02
21
21
21
03
03
03
01
01
01
02
02
02
01
01
01
03
03
03
01
01

gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

as

as

as

as

as

as

as

as

as

26

Parent-Child: Synchronized (Output

01
02
02
02
01
01
01
03
03
03
01
01
01
02
02
02
01
01
01
03
03
03
01
01
01
02

increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements

28.11.2023

counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

a5

a5

a5

a5

a5

a5

a5

a5

02
02
01
01
01
03
03
01
03
01
01
B2
B2
B2
01
01
01
03
03
03
01
01
01
B2
B2

gets value
increments
decrements
gets value
increments
decrements
gets value
decrements
increments
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

2023/2024(1) — Object Oriented Programming | MM Irfan

as

as

as

as

as

as

as

as

as

9

02
21
21
21
23
23
23
21
21
21
02
02
02
02
02
02
21
21
23
21
23
23
21
21
21
02

increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
decrements
increments
gets value
increments
decrements
gets value
increments
decrements

Subakti

counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter

as

as

as

as

as

as

as

as

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value
increments
decrements
gets value

Parent ended

of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter
counter
counter
of counter

as @

as @

as @

as @

as @

as @

as @

as @

as @

27

Deadlock & livelock

* We will talk about a different problem to do with synchronisation
between multiple threads accessing a number of resources:
e Deadlock. E.g., the dining philosopher problem

* Livelock. E.g., the situation of side-stepping to avoid walking into someone,
but they also side-step. Other example: sharing resource problem (see later).

SIDESTEP TO'AVOID WALKINGI|INTO Thread LivelLock
SOMEONE COMING YOUR|WAY

eeeeeeeeeeee

Activa?

Thread 2

IGICHIG:COM

2023/2024(1) — Object Oriented Programming | M

28.11.2023 Subakti

28

Deadlock: Dining philosopher problem

* Five silent philosophers sit at a round table with bowls of spaghetti. Forks are
placed between each pair of adjacent philosophers.

e Each philosopher must alternately think and eat. However, a philosopher can only
eat spaghetti when they have both left and right forks. Each fork can be held by
only one philosopher at a time and so a philosopher can use the fork only ifitis
not beinﬁ used by another philosopher. After an individual hilosopher(i/nishes
eating, they need to put down both forks so that the forks become available to
others. A philosopher can only take the fork on their right or the one on their left
as they become available and they cannot start eating before getting both forks.

* Eating is not limited by the remaining amounts ofﬂaaghetti or stomach space; an
infinite supply and an infinite demand are assumed.

* The problem is how to design a discipline of behaviour (a concurrent algorithm)
such that no philosopher will starve; i.e., each can forever continue to alternate
between eating and thinking, assuming that no philosopher can know when
others may want to eat or think.

2023/2024(1) — Object Oriented Programming | MM Irfan
Subakti

28.11.2023 29

Dining philosopher: Code (HerongYang.com)

Fhilosopnerjava X
1 import java.util.*;
20 /*

* Based on HerongYang.com's work

3
4

*/

5 public class Philcsopher|extends Thread [

34
35
36

public static final int numberOfThreads = 5;
public static Object[] ListOfLocks = new Object[numberOfThreads];
public static String[] dinerTable = new String[4 * numberOfThreads];
public static String[] LlockedDiner = new String[4 * numberOfThreads];
public static Random randomGenerator = new Random();
public static int unitOfTime = 500;
private int threadIndex;
private static String array2String(Object arr[], String delimiter) {
StringBuilder sb = new StringBuilder();
for (Object obj : arr)

sb.append(abj.toString()).append(delimiter);
return sb.substring(@, sb.length() - 1);
¥
private static String getInfo(String s[]) {

String result = "";
for (int i = @; i < numberOfThreads; i++) {
if (s[4 * i].equals(""")) {
result += "Fork:Idle ";
} else {
result += "Fork:Taken ";
¥
if (s[4 * i + 2].equals(" 0 ™)) {
result += "[P" + (i + 1) + ":No fork] ";
1 else if (s[4 * i + 2].equals("<0>™)) {
result += "[P" + (i + 1) + ":2 forks] ";
} else {
result += "[P" + (1 + 1) + ": 1 fork] *;
¥
¥

return result;

h

37¢
38
39
40=
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

-70
71
72

public Philosopher(int i) {
threadIndex = 1}
by
public void run() {
while (!isInterrupted()) {
try {
sleep(unitOfTime * randomGenerator.nextInt(6));
} catch (InterruptedException e) {
break;
¥

// Try to get the fork on the left
Object leftlLock = listOfLocks[threadIndex];
| synchronized (leftlock) { |
int 1 = 4 * threadIndex;
dinerTable[i] = " ";
dinerTable[i + 1] = "~";
dinerTable[i + 2] "<0 "
try {
sleep(unitOfTime * 1);
} catch (InterruptedException e) {
break;
¥

// Try to get the fork on the right
Object rightlock = listOfLocks[(threadIndex + 1) % numberOfThreads];
| synchronized (rightLock) {
dinerTable[1 + 2] = "<0>";
dinerTable[i + 3] = "~";
dinerTable[(i + 4) % (4 * numberOfThreads)] =" ";
try {
sleep(unitofTime * 1);
} catch (InterruptedException e) {
break;

b

dinerTable[i] = "*";
dinerTable[i + 1] "y
dinerTable[i + 2] "0

Dining philosopher: Code (HerongYang.com)

73 dinerTable[1 + 3] = " ";

74 dinerTable[(i + 4) % (4 * numberOfThreads)] = """;

75

76 }) 100 while (true) {

77 } 1e1 step++;

78 } 102 String sDinerTable = array2String(dinerTable, "");
79¢ public static void main(String[] a) { 103 System.out.println(sDinerTable + " " + step + "\t" + getInfo(dinerTable));
20 for (int i = @; i < numberOfThreads; i++) 104 if (lockedString.equals(sDinerTable)) {
81 ListOflocks[i] = new Object(); 105 break;

82 for (int i = @; i < numberOfThreads; i++) { 106 h

83 dinerTable[4 * i] = ""; 1e7 try {

84 dinerTable[4 * i + 1] = " "; 108 Thread.sleep(unitOfTime);

85 dinerTable[4 * i + 2] = " 0 "; 109 } catch (InterruptedException e) {

26 dinerTable[4 * i + 3] =" "3 110 System.out.println("Interrupted.™);
87 LockedDiner[4 * i] = " "; 111 }

28 LockedDiner[4 * i + 1] = "*"; 112 ¥

29 LockedDiner[4 * i + 2] = "<0 "; 113 System.out.println("The diner is locked.");
90 LockedDiner[4 * i + 3] =" "; 114 h

91 } 115 }

92 for (int i = @; i < numberOfThreads; i++) {

93 Thread t = new Philosopher(i);

94 t.setDaemon(true);

95 t.start();

96 T

97 String lockedString = array2String(lockedDiner, "");

98 System.out.println("The diner table:");

99 long step = 0;

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti 31

28.11.2023

Dining philosopher: Output

@1 Problems @ Javadoc [EL Declaration [E Console X

<terminated> Philosopher [Java Application] D:\Program\JavatJDK\binjavaw.exe (28 Nov 2021, 22:5&00 - 22:58:12)
The diner table:

A~ 0 MO0 ~ 0~ 0 ™0 1 Fork:Idle [P1:No fork] Fork:Taken [P2: 1 fork] Fork:Idle [P3:No fork] Fork:Idle [P4:No fork] Fork:Taken [P5: 1 fork]
0 MO 0~ 0 M<0>» 2 Fork:Taken [P1:No fork] Fork:Taken [P2:2 forks] Fork:Taken [P3:No fork] Fork:Idle [P4:No fork] Fork:Taken [P5:2 forks]
A~ 0 ~ 0 ™~ 0 "~ 0 ~ 0 3 Fork:Idle [Pl:No fork] Fork:Idle [P2:No fork] Fork:Idle [P3:No fork] Fork:Idle [P4:No fork] Fork:Idle [P5:No fork]
A0~ 0 M0 M 0 ™0 4 Fork:Idle [P1:No fork] Fork:Idle [P2:No fork] Fork:Taken [P3: 1 fork] Fork:Idle [P4:No fork] Fork:Taken [P5: 1 fork]
"0 M 0 M0 M0 <0 5 Fork:Taken [P1: 1 fork] Fork:Idle [P2:No fork] Fork:Taken [P3: 1 fork] Fork:Taken [P4: 1 fork] Fork:Taken [P5: 1 fork]
0> 0 20 <0 ™0 6 Fork:Taken [P1:2 forks] Fork:Taken [P2:No fork] Fork:Taken [P3: 1 fork] Fork:Taken [P4: 1 fork] Fork:Taken [P5: 1 fork]
0O~ 0 ™0 M0 0> 7 Fork:Taken [P1l:No fork] Fork:Idle [P2:No fork] Fork:Taken [P3: 1 fork] Fork:Taken [P4: 1 fork] Fork:Taken [P5:2 forks]
0 ~<0 "™~<0 ™~<0>* 0 8 Fork:Idle [P1:No fork] Fork:Taken [P2: 1 fork] Fork:Taken [P3: 1 fork] Fork:Taken [P4:2 forks] Fork:Taken [P5:No fork]
A D M0 MO 0~ 009 Fork:Idle [P1:No fork] Fork:Taken [P2: 1 fork] Fork:Taken [P3:2 forks] Fork:Taken [P4:No fork] Fork:Idle [P5:No fork]
A0 MO 0~ 0~ 0 10 Fork:Taken [P1: 1 fork] Fork:Taken [P2:2 forks] Fork:Taken [P3:No fork] Fork:Idle [P4:No fork] Fork:Idle [P5:No fork]
AO»c O~ 0O~ 0~ 0 11 Fork:Taken [P1:2 forks] Fork:Taken [P2:No fork] Fork:Idle [P3:No fork] Fork:Idle [P4:No fork] Fork:Idle [P5:No fork]
0 ~0 ~ 0 ~ 0 ~ 0 12 Fork:Idle [P1:No fork] Fork:Taken [P2: 1 fork] Fork:Idle [P3:No fork] Fork:Idle [P4:No fork] Fork:Idle [P5:No fork]
A0 M0 00 M0 M0 13 Fork:Idle [P1l:No fork] Fork:Taken [P2:2 forks] Fork:Taken [P3:No fork] Fork:Taken [P4: 1 fork] Fork:Taken [P5: 1 fork]
0~ 0 ~0 ™0 M<0> 14 Fork:Taken [P1:No fork] Fork:TIdle [P2:No fork] Fork:Taken [P3: 1 fork] Fork:Taken [P4: 1 fork] Fork:Taken [P5:2 forks]
A0 & 0 M0 M0~ 0 15 Fork:Taken [P1: 1 fork] Fork:Idle [P2:No fork] Fork:Taken [P3: 1 fork] Fork:Taken [P4:2 forks] Fork:Taken [P5:No fork]
A0 0 M<0»™ 0~ 0 16 Fork:Taken [P1:2 forks] Fork:Taken [P2:No fork] Fork:Taken [P3:2 forks] Fork:Taken [P4:No fork] Fork:Idle [P5:No fork]
0 ~~0 ~ 0 ~ 0 ~ 0 17 Fork:Idle [P1:No fork] Fork:Taken [P2: 1 fork] Fork:Idle [P3:No fork] Fork:Idle [P4:No fork] Fork:Idle [P5:No fork]
A~ 0 ™0 "0 ~ 0 ~ 0 18 Fork:Idle [P1l:No fork] Fork:Taken [P2: 1 fork] Fork:Taken [P3: 1 fork] Fork:Idle [P4:No fork] Fork:Idle [P5:No fork]
A~ 0 M0 MO 0~ 0 19 Fork:Idle [P1:No fork] Fork:Taken [P2: 1 fork] Fork:Taken [P3:2 forks] Fork:Taken [P4:No fork] Fork:Idle [P5:No fork]
A0 MO0 0 M 00 MO 20 Fork:Taken [P1: 1 fork] Fork:Taken [P2:2 forks] Fork:Taken [P3:No fork] Fork:Idle [P4:No fork] Fork:Taken [P5: 1 fork]
"0 M0 M 0 M0 ™0 21 Fork:Taken [P1: 1 fork] Fork:Taken [P2: 1 fork] Fork:Idle [P3:No fork] Fork:Taken [P4: 1 fork] Fork:Taken [P5: 1 fork]
A0 M0 M0 "D M0 22 Fork:Taken [P1: 1 fork] Fork:Taken [P2: 1 fork] Fork:Taken [P3: 1 fork] Fork:Taken [P4: 1 fork] Fork:Taken [P5: 1 fork]
The diner is locked.
28.11.2023 2023/2024(1) — Object Oriented Programming | MM Irfan 37

Subakti

Dining philosopher: Solution (Wikipedia)

* Resource hierarchy solution
 Dijkstra: assign a partial order to the resources, i.e., the forks

 Arbitrator solution
* A philosopher can only pick up both forks or none by introducing an arbitrator

 Limiting the number of diners in the table
* William Stallings: allow a maximum of n-1 philosopher to sit down at any time

* Chandy/Misra solution
* Allow arbitrary agents to contend for an arbitrary number of resources
* Completely distributed, requires no central authority after initialisation
 Violates the requirement that philosophers don’t speak to each other

Livelock: Sharing resource problem (logicbig.com)

Two threads want to access a shared common resource via a Worker object but when they see

that other Worker (invoked on another thread) is also 'active’, they attempt to hand over the
resource to other worker and wait for it to finish.

* If initially we make both workers active they will suffer from livelock.
Thread LivelLock

Commaon
Resource

28.11.2023

IGIELIGCOM 34

Thread LivelLock

Sharing resource problem: Code (logicbig.com)

J| Workerjava X

1 package sharingres; 15& public synchronized void work(CommonResource commonResource, Worker otherWorker) {
2 public class Worker { 16 while (active) {
3 private String name; 17 // Wait for the resource to become available.
- private boolean active; 18 if (commonResource.getOwner() != this) {
5 public Worker(String name, boolean active) { 19 try {
6 this.name = name; 20 wait(1e);
7 this.active = active; 21 } catch (InterruptedException e) {
8 ¥ 22 // ignore
9e public String getName() { 23 }
10 return name; 24 continue;
11) 25 }
12= public boolean isActive() { 26 // It other worker is also active let it do it's work first
13 return active; 27 if (otherWorker.isActive()) {
14 T 28 System.out.println(getName() +
29 " : handover the resource to the worker " + otherWorker.getName());
30 commonResource.setOwner(otherWorker);
31 continue;
32 }
33 // Now use the commonResource
34 System.out.println(getName() + ": working on the common resource");
35 active = false;
36 commonResource.setOwner(otherWorker);
37 }
38 }
39 }

2023/2024(1) — Object Oriented Programming | MM Irfan

28.11.2023 Subakti

35

Thread LiveLock

Sharing resource problem: Code (logicbig.com)

I| CommonResourcejava J] Livelockjava x
1 package sharingres; 1 package sharingres;
2 public class CommonResource { 2 public class Livelock {
3 private Worker owner; 3e public static void main(String[] args) {
4e public CommonResource(Worker d) { 4 final Worker workerl = new Worker("Worker 1", true);
5 owner = d; 5 final Worker worker2 = new Worker("Worker 2", true);
6 } 6 final CommonResource s = new CommonResource(workerl);
7€ PUbliC Worker EEtwnerc) { 7 new Thr‘ead(() -> { | Problems @ Javadoc [} Declaration & Consale x
8 return owner; 8 workerl. WOP"((S, wor‘ker‘2:}, <term|nated> Livelock [Java Application] D:\Program‘JavalJDK\bin\javaw.exe (29 Nov 2021, 08:57:36 - 08:37:50)
g 1 g V.start(); Worker 1 : handover the resource to the worker Worker 2
10= public synchronized void setOwner(Worker d) { i10 new Thread(() -> { Worker 2 : handover the resource to the worker Worker 1
11 owner = d; 11 worker2.work(s, workerl); Worker 1 : handover the resource to the worker Worker 2
] Worker 2 : handover the resource to the worker Worker 1
12 ¥ 12 })'Start()’ Worker 1 : handover the resource to the worker Worker 2
13} 13 ¥ Worker 2 : handover the resource to the worker Worker 1
14 } Worker 1 : handover the resource to the worker Worker 2
Worker 2 : handover the resource to the worker Worker 1
Worker 1 : handover the resource to the worker Worker 2
Worker 2 : handover the resource to the worker Worker 1
Worker 1 : handover the resource to the worker Worker 2
Worker 2 : handover the resource to the worker Worker 1
Worker 1 : handover the resource to the worker Worker 2
Worker 2 : handover the resource to the worker Worker 1
Worker 1 : handover the resource to the worker Worker 2
Worker 2 : handover the resource to the worker Worker 1
Worker 1 : handover the resource to the worker Worker 2
Worker 2 : handover the resource to the worker Worker 1
Worker 1 : handover the resource to the worker Worker 2
Worker 2 : handover the resource to the worker Worker 1
1 + handmuar tha roacrnirra +n the wnrlar Linelar 2

2023/2024(1) — Object Oriented Programming | MM Irfan nrber

28.11.2023 Subakti

36

Thread Livelock

Sharing resource problem: Solution qegcsigcom) ==

* We can fix the issue by processing the common resource sequentially
rather than in different threads simultaneously.

e Just like deadlock, there's no general guideline to avoid livelock, but
we have to be careful in scenarios where we change the state of
common objects also being used by other threads, for example in
above scenario, the Worker object.

Thread: Another example

* Reference

* Deitel, H.M. and Deitel, PJ. (2002) Java: How to Program. Prentice Hall, 4th
Edition, Upper Saddle River, NJ, USA.

Thread: Life cycle T

28.11.2023

- — —___H--H-\-H
quantumm |
expiration | | dispatch ﬁr:'
/ o yleld (assign a o
f _:f"/ é" interrupt /'}{_____ processor) xf_:r,%
/ o/ & running 8,
/ Ji S 5,
L=V N
| = @ Qs xlx%ﬁf I'.
| | "r E.f s |
| | ﬁ A |
/ \ x\\
| .

| - L

i
Y {
!

\ sleep In’rewul/
— e:-:pllei B
39

2023/2024(1) — Object Orien_téd_Programming | MM Irfan
Subakti

Producer-consumer (ProCon): Output

28.11.2023

| £| Demonstrating Thread Synchronisation - O d
Produced 1 into cell 0 write 1 read 0 buffer: 1-1-1-1-1
Consumed 1 from cell 0 write 1 read 1 buffer: 1-1-1-1-1
BLFFER EMPTY
Produced 2 into cell 1 write 2 read 1 buffer: 1 2-1-1-1
Produced 3 into cell 2 write 3 read 1 buffer: 1 2 3-11
Produced 4 into cell 3 write 4 read 1 buffer: 1 2 3 41
Produced 5 into cell 4 write 0 read 1 buffer: 12345
Produced § into cell 0 write 1 read 1 buffer. 62345
BUFFER FULL WAITING TO PRODUCE 7
Consumed 2 from cell 1 write 1 read 2 buffer. 62345
Produced 7 into cell 1 write 2 read 2 buffer. 67 345
BLFFER FULL WAITING TO PRODUCE 8
Consumed 3 from cell 2 write 2 read 3 buffer. 67 345
Produced 8 into cell 2 write 3 read 3 bufferr 6 7845
BLFFER FULL WAITING TO PRODUCE 9
Consumed 4 from cell 3 write 3 read 4 bufferr 6 7845
Produced 9 into cell 3 write 4 read 4 bufferr 6 7895
BLFFER FULL WAITING TO PRODUCE 10
Consumed 5 from cell 4 write 4 read 0 buffer. 6 78 9
Produced 10 into cell 4 write 0 read 0 buffer. 6 7 8 9 10
BLFFER FULL
Producelnteger finished producing values
Terminating Producelnteger
Consumed 6 from cell 0 write 0 read 1 buffer. 6 7 8 9 10
Consumed 7 from cell 1 write 0 read 2 buffer. 6 7 8 9 10
Consumed 8 from cell 2 write 0 read 3 buffer. 6 7 8 9 10
Consumed 9 from cell 3 write 0 read 4 buffer. 6 7 8 9 10
Consumed 10 from cell 4 write 0 read 0 buffer. 6 7 8 9 10
BLFFER EMPTY

Consumelnteger retrieved values totaling: 55
Terminating Consumelnteger

| £/ Demonstrating Thread Synchronization

Produced 1 into cell 0 write 1
Produced 2 into cell 1 write 2
Produced 3 into cell 2 write 3
FProduced 4 into cell 3 write 4
Consumed 1 from cell 0 write 4
Froduced 5 into cell 4 write 0
Produced 6 into cell 0 write 1
BLFFER FULL WAITING TO PRODUCE 7
Consumed 2 from cell 1 write 1
Produced 7 into cell 1 write 2
BLFFER FULL

Consumed 3 from cell 2 write 2
Produced & into cell 2 write 3
BLUFFER FULL WAITING TO PRODUCE 8
Consumed 4 from cell 3 write 3
FProduced 9 into cell 3 write 4
BUFFER FULL WAITING TO PRODUCE 10
Consumed 5 from cell 4 write 4
Produced 10 into cell 4 write 0
BLFFER FULL

Producelnteger finished producing values
Terminating Producelnteger

Consumed 6 from cell 0 write 0
Consumed 7 from cell 1 write 0
Consumed 8 from cell 2 write 0
Consumed 9 from cell 3 write 0
Consumed 10 from cell 4 write 0
BUFFER EMPTY

Consumelnteger retrieved values totaling: 55
Terminating Consumelnteger

read 0
read 0
read 0
read 0
read 1
read 1
read 1

read 2
read 2

read 3
read 3

read 4
read 4

read 0
read0

read
read 2
read 3
read 4
read 0

buffer:
buffer:
buffer:
buffer:
buffer:
buffer:
buffer:

buffer:
buffer:

buffer:
buffer:

buffer:
buffer:

buffer:
buffer:

buffer:
buffer:
buffer:
buffer:
buffer:

[= e =
B R N |
0o oo o 0o o
[T= T - T

.

10
10
10
10
10

1]

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

40

ProCon.java

i| ProConjava 24 // Set up threads

1 package procon; 25 HoldIntegerSynchronized sharedObject =

2 26 new HoldIntegerSynchronized(outputArea);
3 // Show multiple threads modifying shared object. 27

4 import javax.swing.*; 28 ProduceInteger producer =

5 29 new Producelnteger(sharedObject, outputArea);
6 30

7 public class ProCon extends JFrame { 31 Consumelnteger consumer =

8 32 new Consumelnteger(sharedObject, outputArea);
9s fEx 33
10 * Generate the default serial version UID 34 // Start threads
11 * / 35 producer.start();
12 private static final long serialVersionUID = 1L; 36 consumer.start();
13 37 h
14 // Set up GUI 38
15= public ProCon() { 39 // Execute application
16 super("Demonstrating Thread Synchronisation"); 40= public static void main(String args[]) {
17 41 ProCon application = new ProCon();
18 JTextArea outputArea = new JTextArea(20, 30); 42
19 getContentPane().add(new 1ScrollPane(outputArea)); 43 application.setDefaultCloseOperation(

20 A4 IFrame.EXIT_ON_CLOSE);

21 setSize(500, 500); 45 T

22 setVisible(true); 46 }

23

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti Al

28.11.2023

UpdateThread. java

J] UpdateThread java
| 1 package procon;

2
3 import javax.swing.*;
4
5 public class UpdateThread extends Thread {
6
7 private JTextArea outputArea;
8 private String messageToOutput;
9
10 // Initialise outputArea and message
11s public UpdateThread(JTextArea output, String message) {
12 outputArea = output;
13 messageToOutput = message;
14 }
15
16 // Method called to update outputArea
17e @Override
18 public void run() {
19 outputArea.append(messageToOQutput);
20)
21}
58.11.2023 2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

42

ProducelInteger.java

1] Producelntegerjava 19 // ProducelInteger thread loops 10 times and calls
. 1 package procon; 20 // sharedObject's setSharedInt method each time
2 21e @Override
3 import javax.swing.*; 22 public void run() {
4 23 for (int count = 1; count <= 10; count++) {
5 public class Producelnteger extends Thread { 24
6 25 // Sleep for a random interval
7 private HoldIntegerSynchronized sharedObject; 26 // Note: Interval shortened purposely to fill buffer
8 private JTextArea outputArea; 27 try {
9 28 Thread.sleep((int) (Math.random() * 5080));
10 // Initialise Producelnteger 29 } // Process InterruptedException during sleep
11= public ProduceInteger(HoldIntegerSynchronized shared, 30 catch (InterruptedException exception) {
12 JTextArea output) { 31 System.err.println(exception.toString());
13 super("ProduceInteger"); 32 }
14 33
15 sharedObject = shared; 34 sharedObject.setSharedInt(count);
16 outputArea = output; 35 }
17) 36
18 37 // Update Swing GUI component
38 SwingUtilities.invokelater(new UpdateThread(outputArea,
39 "\n" + getName() + " finished producing values"
40 + "\nTerminating " + getName() + "\n"));
11 }
12 }
58.11.2023 2023/2024(1) — Object Oriented Programming | MM Irfan 43

Subakti

Consumelnteger.java

I| Consumelntegerjava X

1 package procon;

2

3 import javax.swing.*;

4

5 public class ConsumeInteger extends Thread {

6

7 private HoldIntegerSynchronized sharedObject;
8 private JTextArea outputArea;

9
10 // Initialise Consumelnteger
11s public ConsumelInteger(HoldIntegerSynchronized shared,
12 JTextArea output) {
13 super("ConsumeInteger™);
14 sharedObject = shared;
15 outputArea = output;
16)
17

28.11.2023

18
19
20e
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43 }

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

// ConsumeInteger thread loops until it receives 10
// from sharedObject's getSharedInt method
@Override
public void run() {

int value, sum = 8;

do {
// Sleep for a random interval
try {
Thread.sleep((int) (Math.random() * 3000));
} // Process InterruptedException during sleep
catch (InterruptedException exception) {
System.err.println(exception.toString());

h

value = sharedObject.getSharedInt();
sum += value;

} while (value != 10);

// Update Swing GUI component

SwingUtilities.invokelater(new UpdateThread(outputArea,
"\n" + getName() + " retrieved values totaling:
+ sum + "\nTerminating " + getName() + "\n"));

44

HoldIntegerSynchronized. java

| HoldIntegerSynchronized.java

1 package procon; 25 // Synchronised method allows only one thread at a time to

2 26 // invoke this method to set a value in a particular

3= // Definition of class HoldIntegerSynchronized that 27 // HoldIntegerSynchronized object

Bersy - Y ’]

4 [/ uses thread synchronisation to ensure that both 28= public synchrenized veid setSharedInt(int value) {

5 // threads access sharedInt at the proper times. 29 while (lwriteable) {

6= import java.text.DecimalFormat; 30

7 import javax.swing.*; ’ i; if T?Pead that called this method must wait

8 ry

9 public class HoldIntegerSynchronized { ii // Update Swing GUI .
10 pdate Swing componen

. 35 SwingUtilities.invokelater(new UpdateThread(

L // Array of shared locations 36 outputArea, " WAITING TO PRODUCE " + value));
12 private int sharedInt[] = {-1, -1, -1, -1, -1}; 37
13 // Variables to maintain buffer information 38 wait();
14 pr}vate boolean writeable = true; 39 } // Process InterrupteException while thread waiting
15 pr}vate ?uolean readable - fa]se%] 40 catch (InterruptedException exception) {
16 private int readlocation = @, writelocation = @; A1 System.err.println(exception.toString());
17 // GUI component to display output A2 }
18 private JTextArea outputArea; A3 }
19 44 // Place value in writelocation

20 // Initialise HoldIntegerSynchronized 45 sharedInt[writelocation] = value;

21e public HoldIntegerSynchronized(JTextArea output) { 46

22 outputArea = output; 47 // Indicate that consumer can read a value

23 } 48 readable = true;

24 49

2023/2024(1) — Object Oriented Programming | MM Irfan
28.11.2023 /2024(1) = Obj . | 45

Subakti

HoldIntegerSynchronized. java (cont’d)

50 ff.UpdaFe.Swing.GUI component 78
51 SwingUtilities.invokelater(new UpdateThread(outputArea, 79 // Synchronised method allows only one thread at a time to
52 "\nProduced " + value + " into cell " 30 // invoke this method to get a value from a particular
53 + writelocation)); 31 // HoldIntegerSynchronized object
54 82e public synchronized int getSharedInt() {
55 // Update writelocation for future write operation 83 int value;
56 writelLocation = (writelLocation + 1) % 5; 84
57 85 while (!readable) {
53 // Update Swing GUI component 86
59 SwingUtilities.invokelater(new UpdateThread(outputArea, 87 // Thread that called this method must wait
60 "\twrite " + writelLocation + "\tread " 88 try {
61 + readlLocation)); 83
62 90 // Update Swing GUI component
63 displayBuffer(outputArea, sharedInt); 91 5w1ngUt111tles.1nuokaafer{new UpdateThPEad(
o 92 outputArea, " WAITING TO CONSUME™));
65 // Test if buffer is full 2 walt(); L "
. . . . 94 } // Process InterrupteException while thread waiting
66 if (writelocation == readlocation) { . i
67 teable — false: 95 catch (InterruptedException exception) {
s writeable = Taise; 96 System.err.println(exception.toString());
97
69 // Update Swing GUI component 98 })
70 SwingUtilities.invokelater(new UpdateThread(outputArea, o4
71 "\nBUFFER FULL")); 100 // Indicate that producer can write a value
72 } 101 writeable = true;
73 102
74 // Tell a waiting thread to become ready 103 // Obtain value at current readlLocation
75 notify(); 104 value = sharedInt[readlLocation];
76 185
77 } // End method setSharedInt d Programming | MM Irfan
25.11.2023 46

Subakti

HoldIntegerSynchronized. java (cont’d)

106
107
108
199
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

28.11.2023

// Update Swing GUI component
SwingUtilities.invokelater(new UpdateThread(outputArea,
"\nConsumed " + value + " from cell "
+ readlLocation));

// Update read location for future read operation
readlLocation = (readLocation + 1) ¥ 5;

// Update Swing GUI component
SwingUtilities.invokelater(new UpdateThread(outputArea,
"\twrite " + writelocation + "\tread "

+ readlLocation));

displayBuffer(outputArea, sharedInt);

// Test if buffer is empty
if (readlLocation == writelocation) {
readable = false;

// Update Swing GUI component
SwingUtilities.invokelater(new UpdateThread(
outputArea, "\nBUFFER EMPTY"));

h

// Tell a waiting thread to become ready
notify();

return value;

} // End method getSharedInt
2023/2024(1) — Object Oriented Programming | MM Irfan

136
137
138¢
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153 }

Subakti

// Display contents of shared buffer
public void displayBuffer(JTextArea outputArea,

int buffer[]) {
DecimalFormat formatNumber = new DecimalFormat("™ #;-#");
StringBuffer outputBuffer = new StringBuffer();

// Place buffer elements in outputBuffer
for (int count = @; count < buffer.length; count++) {
outputBuffer.append(
" " + formatNumber.format(buffer[count]));

h

// Update Swing GUI component
SwingUtilities.invokelater(new UpdateThread(outputArea,
"\tbuffer: " + outputBuffer));

47

	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #11 Thread, Race & Deadlock-Livelock
	Slide 2: Thread: What is that?
	Slide 3: Thread: More about
	Slide 4: Thread: Why?
	Slide 5: Parent-Child
	Slide 6: Parent-Child (continued)
	Slide 7: Parent-Child (continued)
	Slide 8: New Parent-Child
	Slide 9: New Parent-Child (continued)
	Slide 10: New Parent-Child: Output
	Slide 11: New Parent-Child: Explanation
	Slide 12: New Parent-Child: Explanation (continued)
	Slide 13: New Parent-Child v02: Stop the children
	Slide 14: New Parent-Child v02: Output
	Slide 15: Race
	Slide 16: Race (continued)
	Slide 17: Race (continued)
	Slide 18: Parent-Child: Race
	Slide 19: Parent-Child: Race (Output)
	Slide 20: Parent-Child: Race (Output)
	Slide 21: Parent-Child: Race (Output)
	Slide 22: Parent-Child: Race (Output)
	Slide 23: Race: Solution
	Slide 24: Race: Solution (continued)
	Slide 25: Parent-Child: Synchronized
	Slide 26: Parent-Child: Synchronized (Output)
	Slide 27: Parent-Child: Synchronized (Output)
	Slide 28: Deadlock & livelock
	Slide 29: Deadlock: Dining philosopher problem
	Slide 30: Dining philosopher: Code (HerongYang.com)
	Slide 31: Dining philosopher: Code (HerongYang.com)
	Slide 32: Dining philosopher: Output
	Slide 33: Dining philosopher: Solution (Wikipedia)
	Slide 34: Livelock: Sharing resource problem (logicbig.com)
	Slide 35: Sharing resource problem: Code (logicbig.com)
	Slide 36: Sharing resource problem: Code (logicbig.com)
	Slide 37: Sharing resource problem: Solution (logicbig.com)
	Slide 38: Thread: Another example
	Slide 39: Thread: Life cycle
	Slide 40: Producer-consumer (ProCon): Output
	Slide 41: ProCon.java
	Slide 42: UpdateThread.java
	Slide 43: ProduceInteger.java
	Slide 44: ConsumeInteger.java
	Slide 45: HoldIntegerSynchronized.java
	Slide 46: HoldIntegerSynchronized.java (cont’d)
	Slide 47: HoldIntegerSynchronized.java (cont’d)

