2023/2024(1)
EF234302 Object Oriented Programming

Lecture #12

Socket & Team Project

Misbakhul Munir IRFAN SU BAKTI

=) f J1 N
muesacyn vy UP@AH CyBaKTH

S O C ket : W h at | S t h a t ? (https://docs.oracle.com/javase/tutorial/networking/sockets)

* A socket is one endpoint of a two-way communication link between
two programs running on the network.

* A socket is bound to a port number so that the TCP layer can identify
the application that data is destined to be sent to.

* The java.net package in the Java platform provides a class, socket,
that implements one side of a two-way connection between your Java
program and another program on the network.

SO C ket EX p | a n at | O n (https://docs.oracle.com/javase/tutorial/networking/sockets)

* The Socket class sits on top of a platform-dependent implementation,
hiding the details of any particular system from your Java program. By
using the java.net.Socket class instead of relying on native code, your
Java programs can communicate over the network in a platform-
independent fashion.

e Additionally, java.net includes the ServerSocket class, which
implements a socket that servers can use to listen for and accept
connections to clients.

* |If you are trying to connect to the Web, the URL class and related classes
(URLConnection, URLEncoder) are probably more appropriate than the
socket classes. In fact, URLs are a relatively high-level connection to the
Web and use sockets as part of the underlying implementation.

S O C ket : H OW | t WO r k ? (https://www.ibm.com/docs/en/i/7.3?topic=programming-how-sockets-work)

» Sockets are commonly used for client and server interaction.

* Typical system configuration places the server on one machine, with
the clients on other machines.

* The clients connect to the server, exchange information, and then
disconnect.

S O C ket : I\/l O re a b O Ut (https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html)

* Normally, a server runs on a specific computer and has a
socket that is bound to a specific port number. The server just
walts, listening to the socket for a client to make a connection
request.

* On the client-side: The client knows the hostname of the
machine on which the server is running and the port number on
which the server is listening. To make a connection request, the
client tries to rendezvous with the server on the server's
machine and port. The client also needs to identify itself to the
server so it binds to a local port number that it will use during
this connection. This is usually assigned by the system.

Socket: More about (continued)

connection
request

server

- = 05
DriH—-

client

=00

* If everything goes well, the server accepts the connection. Upon
acceptance, the server gets a new socket bound to the same local
port and also has its remote endpoint set to the address and port of
the client. It needs a new socket so that it can continue to listen to
the original socket for connection requests while tending to the needs

of the connected client.

server .
client

- = 0O T

=070

Socket: More about (continued)

* On the client side, if the connection is accepted, a socket is
successfully created and the client can use the socket to communicate
with the server.

* The client and server can now communicate by writing to or reading
from their sockets.

Socket: Reading from & writing to e

[J] EchoServerjava
33=import java.net.*;
34 import java.io.¥;

35
36 public class EchoServer {
37¢ public static void main(String[] args) throws IOException {
38
39 if (args.length != 1) {
49 System.err.println("Usage: java EchoServer <port number:>");
41 System.exit(1);
42 }
43
44 int portNumber = Integer.parseInt(args[@]);
45
46 try (
47 ServerSocket serverSocket =
48 new ServerSocket(Integer.parseInt(args[@]));
49 Socket clientSocket = serverSocket.accept();
50 PrintWriter out =
51 new PrintWriter(clientSocket.getOutputStream(), true);
52 BufferedReader in = new BufferedReader(
53 new InputStreamReader(clientSocket.getInputStream()));
54) {
55 String inputline;
56 while ((inputline = in.readlLine()) != null) {
57 out.println(inputlLine);
58 }
59 } catch (TOException e) {
60 System.out.println("Exception caught when trying to listen on port "
61 + portNumber + " ar listening for a connection");
62 System.out.println(e.getMessage());
63 }
05.12,2023 64 ¥

Socket: Reading from & writing to (continued

J] EchoClientjava
33=import java.io.¥;
34 import java.net.*;

35

36 public class EchoClient {

37¢ public static void main(String[] args) throws IOException {

38

39 if (args.length 1= 2) {

49 System.err.println(

11 "Usage: java EchoClient <host name> <port number>");

42 System.exit(1);

43 } 59 String userInput;

44 60 while ((userInput = stdIn.readlLine()) != null) {
45 String hostName = args[@]; 61 out.println(userInput);

46 int portNumber = Integer.parseInt(args[1]); 62 System.out.println(“echo: " + in.readlLine());
47 63 }

48 try (64 } catch (UnknownHostException e) {

49 Socket echoSocket = new Socket(hostName, portNumber); 65 System.err.println("Don't know about host " + hostName);
50 PrintWriter out = 66 System.exit(1);

51 new PrintWriter(echoSocket.getOutputStream(), true); 67 } catch (IOException e) {

52 BufferedReader in = 68 System.err.println("Couldn't get I/0 for the connection to " +
53 new BufferedReader(69 hostName);

54 new InputStreamReader(echoSocket.getInputStream())); /0 System.exit(1);

55 BufferedReader stdIn = 71 }

56 new BufferedReader(72 }

57 new InputStreamReader(System.in)) 73 }

58) {

2023/2024(1) — Object Oriented Programming | MM Irfan

05.12,2023 Subakti

EchoServer & EchoClient: Output

Bl Cormmand Prompt - java echo/EchoServer 4444

E# Command Prompt - java echo/EchoClient localhost 4444

D:VITSV2021 ITSVO8 QOP\Program\lecture#12\bin>java echo/EchoClient localhost 4444
Hi?

echo: Hi?

Who are y

echo: W

Are y

echo:

EchoServer & EchoClient: Explanation

* This client program is straightforward and simple because the echo server
implements a simple protocol. The client sends text to the server, and the
server echoes it back. When your client programs are talking to a more
complicated server such as an HTTP server, your client program will also be
more complicated. However, the basics are much the same as they are in
this program:

1. Open a socket.

2. Open an input stream and output stream to the socket.

3. Read from and write to the stream according to the server's protocol.
4. Close the streams.

5. Close the socket.

* Only step 3 differs from client to client, depending on the server. The other
steps remain largely the same.

Kn O C k K n O C k S e rve r (https://docs.oracle.com/javase/tutorial/networking/sockets)

1] KnockKnockServerjava
33=import java.net.*;
34 import java.io.¥*;

35
36 public class KnockKnockServer {
37e public static void main(String[] args) throws IOException {
38
39 if (args.length = 1) {
10 System.err.println("Usage: java KnockKnockServer <port number>");
41 System.exit(1);
12 }
413
44 int portNumber = Integer.parseInt(args[@]);
45
46 try (
A7 ServerSocket serverSocket = new ServerSocket(portNumber); 50 while ((inputline = in.readline()) != null) {
48 Socket clientSocket = serverSocket.accept(); . . . h
. . 63 outputlLine = kkp.processInput(inputlLine);
49 PrintWriter out = . .
. . . 64 out.println(outputLine);
50 new PrintWriter(clientSocket.getOutputStream(), true); . . " "
. 65 if (outputlLine.equals("Bye."))
51 BufferedReader in = new BufferedReader(66 break:
52 new InputStreamReader(clientSocket.getInputStream())); 67 ! ’
?i) A 68 } catch (I0Exception e) {
- Stri) L] tputLine: 69 System.out.println("Exception caught when trying to listen on port
o Fing 1nputiine, outputiine; 70 + portNumber + " or listening for a connection");
71 System.out.println(e.getMessage());
57 // Initiate conversation with client 79 } Y P (-8 ge());
58 KnockKnockProtocol kkp = new KnockKnockProtocol(); 73 }
59 outputLine = kkp.processInput(null); 74 }
60 out.println(outputlLine);
6l
2UZ3/ 2024\ 1) — uDpject urientea rrogramming | MM Irfan
05.12,2023 feventt) monl . 6| 12

Subakti

K n O C k K n O C k : P rOtO CO | (https://docs.oracle.com/javase/tutorial/networking/sockets)

[¥] KnockKnockProtocoljava X
33 public class KnockKnockProtocol {

34 private static final int WAITING = @;
35 private static final int SENTKNOCKKNOCK = 1;
36 private static final int SENTCLUE = 2;
37 private static final int ANOTHER = 3;
38 65 } else if (state == SENTCLUE) {
39 private static final int NUMJOKES = 5; 66 if (theInput.equalsIgnoreCase(clues[currentJoke] + " who?")) {
49 67 theOutput = answers[currentJoke] + " Want another? (y/n)";
41 private int state = WAITING; 68 state = ANOTHER;
42 private int currentloke = @; 69 } else {
413 70 theOutput = "You're supposed to say \"" +
44 private String[] clues = { "Turnip™, "Little 01d Lady", "Atch", "Who", "Who™ }; 71 clues[currentJoke] +
45e private String[] answers = { "Turnip the heat, it's cold in here!l”, 72 " who?\"" +
46 "I didn't know you could yodell™, 73 "1 Try again. Knock! Knock!";
47 "Bless youl!™, 74 state = SENTKNOCKKNOCK,
48 "Is there an owl in here?", 75 }
49 "Is there an echo in here?" }; 76 } else if (state == ANOTHER) {
50 77 if (theInput.equalsIgnoreCase("y")) {
51= public String processInput(String theInput) { 78 theOutput = "Knock! Knock!™;
52 String theOutput = null; 79 if (currentloke == (NUMJOKES - 1))
53 80 currentJoke = 8;
54 if (state == WAITING) { 81 else
55 theOutput = "Knock! Knock!"; 82 currentloke++;
56 state = SENTKNOCKKNOCK, 33 state = SENTKNOCKKNOCK,
57 } else if (state == SENTKNOCKKNOCK) { 84 } else {
58 if (theInput.equalsIgnoreCase("Who's there?™)) { 85 theOutput = "Bye.";
59 theOutput = clues[currentloke]; 86 state = WAITING;
60 state = SENTCLUE; 87 }
61 } else { 88 }
62 theOutput = "You're supposed to say \"Who's there?\"! " + 89 return theOutput;
63 "Try again. Knock! Knock!"; 90 }
64 91
05.12,%023 R T L i ST 13

Subakti

Kn O C k K n O C k Cl | e nt (https://docs.oracle.com/javase/tutorial/networking/sockets)

[¥] KnockKnockClientjava
34=import java.lo.¥;
35 import java.net.*;

36

37 public class KnockKnockClient {

38e public static void main(String[] args) throws IOException {

39

49 if (args.length 1= 2) {

41 System.err.println(

42 "Usage: java EchoClient <host name> <port number>");

43 System.exit(1);

a4 }

45

46 String hostName = args[@];

47 int portNumber = Integer.parseInt(args[1]);

48

49 try (65 fromUser = stdIn.readlLine();

50 Socket kkSocket = new Socket(hostName, portNumber); 66 if (fromUser != null) {

51 PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true); 67 System.out.println("Client: " + fromUser);
52 BufferedReader in = new BufferedReader(68 out.println(fromUser);

53 new InputStreamReader(kkSocket.getInputStream())); 69 }

54) { 70 }

55 BufferedReader stdIn = 71 } catch (UnknownHostException e) {

56 new BufferedReader(new InputStreamReader(System.in)); 72 System.err.println("Don’t know about host " + hostName);
57 String fromServer; 73 System.exit(1);

58 String fromUser; 74 } catch (IOException e) {

59 75 System.err.println("Couldn't get I/0 for the connection to " +
60 while ((fromServer = in.readlLine()) != null) { 76 hostName);

61 System.out.println("Server: " + fromServer); 77 System.exit(1);

62 if (fromServer.equals("Bye.")) 78 I

63 break; 79 }

64 80 }

2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti 4

05.12,2023

Knock Knock: Output

BN Command Prompt - java c1/KnockKnockServer 4444 — O W

D:\NITS\2021 ITS\O8 OOP\Program\lecture#l2\bin>java cl/KnockkKnockServer 4444

B8 Command Prompt - java c1/KnockKnockClient localhost 4444 — O x

D:\ITS\202

Server: Knock! Knock!
Hello

Client: Hello

\ an

Server: You're supposed to say "Who's there?"! Try again. Knock! Knock!

Who's there?

Client: Who's there?

Server: Turnip

Turnip who?

Client: Turnip who?

Server: Turnip the heat, 1t's cold in here! Want another? (y/n)

Knock Knock: Multiple clients i

[J] KKMultiServerjava X

33=import java.net.¥;
34 import java.io.¥;

35

36 public class KKMultiServer {

37e public static void main(String[] args) throws IOException {

38

39 if (args.length 1= 1) {

40 System.err.println("Usage: java KKMultiServer <port number>");
41 System.exit(1);

42 }

43

44 int portNumber = Integer.parseInt(args[0]);

45 boolean listening = true;

46

47 try (ServerSocket serverSocket = new ServerSocket(portNumber)) {
48 while (listening) {

49 new KKMultiServerThread(serverSocket.accept()).start();
50 }

51 } catch (IOException e) {

52 System.err.println("Could not listen on port " + portNumber);
53 System.exit(-1);

54 }

55 }

56 }

05.12,2023 2023/2024(1) — Object Oriented Programming | MM Irfan

Subakti

16

K n O C k K n O C k : T h re a d (https://docs.oracle.com/javase/tutorial/networking/sockets)

05.12,2023

J| KKMultiServerThread java
33=import java.net.*;
34 import java.io.¥;

35

36 public class KKMultiServerThread extends Thread {

37
38
39¢
49
a1
42
43

442
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
67
68 }

private Socket socket = null;

public KKMultiServerThread(Socket socket) {
super("KKMultiServerThread");
this.socket = socket;

}

public void run() {

try (
PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

BufferedReader in = new BufferedReader(
new InputStreamReader(
socket.getInputStream()));
)
String inputline, outputline;
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputlLine = kkp.processInput(null);
out.println(outputline);

while ((inputline = in.readLine()) != null) {
outputlLine = kkp.processInput(inputLine);
out.println(outputlLine);
if (outputline.equals("Bye"))

break;
b
socket.close();
} catch (IOException e) {
e.printStackTrace();

}

17

Knock Knock: Multiple clients (output

BE¥ Command Prompt - java cm/KKMultiServer 4444

D:\ITS 1 ITS\O8 OOP\Program\lecture#l2\bin>java cm/KKMultiServer 4444

BE Command Prompt - java em/KnockKnockClient localhost 4444

%ho S thele?

Client: Who's there?

Server: Turnip

Turnip who?

Client: Turnip who?

Server: Turnip the heat, 1t's cold in here! Want another? (y/n)

EX Command Prompt - java cm/KnockKnockClient localhost 4444

D:\ITS\2021 ITS\O8 OOP\Program\lecture#l2\bin>java cm/KnockKnockClient localhost 4444

Server: Knock! Knock!

Hi

Client: Hi

Server: You're supposed to say "Who's there?"! Try again. Knock! Knock!

Who's there?

Lllent: Who's there?
: Turnip

Lllent: Who?

Server: You're supposed to say "Turnip who?"! Try again. Knock! Knock!
Turnip who?

Client: Turnip who?

Server: You're supposed to say "Who's there?"! Try again. Knock! Knock!

Team Project

* Topic of project
* Distribution of work = specification comes in

Server Client

DB & DB

. GUI
connectivity

Testing &
Documentation

Server: knock, knock

Team Project (continued) ¥

Client: who's there?

=

 Specification & document interface: generic
term, it’s not necessarily using Java interface

Server: <somebody>

=

* Protocol, flow chart Clent: somebod>

¢:
>
o
-J

* E.g., Knock-knock server-client communication ¥
protocol

=

Server: want more?

‘No

2023/2024(1) — Object Oriented Programming | MM Irfan Server terminates

05.12,2023 Subakti

Team Project (continued)

e Think about test cases

Interface

AMB

* A design test case for B, since A uses B’s functions
* B design test case for A, since B uses A’s functions

2023/2024(1) — Object Oriented Programming | MM Irfan

05.12,2023 Subakti

21

Team Project (continued)

* Clearly describe:
* Design: Specification = Design = Implementation

* Product documentation
e User level
* Performance criteria
* How to install the system (installation)
* Trouble shooting

* Develop & use test plans
* E.g., stubs
* Multithreaded
* Distributed testing

Team Project (continued)

* Need to take care carefully:
e Server down =2 the client should know this
* Client down = the server should know this

* Exception handling
e Connection error when a server down
e Connection error when a client down

	Slide 1: 2023/2024(1) EF234302 Object Oriented Programming Lecture #12 Socket & Team Project
	Slide 2: Socket: What is that? (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 3: Socket: Explanation (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 4: Socket: How it work? (https://www.ibm.com/docs/en/i/7.3?topic=programming-how-sockets-work)
	Slide 5: Socket: More about (https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html)
	Slide 6: Socket: More about (continued)
	Slide 7: Socket: More about (continued)
	Slide 8: Socket: Reading from & writing to (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 9: Socket: Reading from & writing to (continued)
	Slide 10: EchoServer & EchoClient: Output
	Slide 11: EchoServer & EchoClient: Explanation
	Slide 12: Knock Knock: Server (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 13: Knock Knock: Protocol (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 14: Knock Knock: Client (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 15: Knock Knock: Output
	Slide 16: Knock Knock: Multiple clients (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 17: Knock Knock: Thread (https://docs.oracle.com/javase/tutorial/networking/sockets)
	Slide 18: Knock Knock: Multiple clients (output)
	Slide 19: Team Project
	Slide 20: Team Project (continued)
	Slide 21: Team Project (continued)
	Slide 22: Team Project (continued)
	Slide 23: Team Project (continued)

