
2023/2024(2)
EF234201 Data Structure

Lecture #2

Array: Searching
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти

Array: Definition

• Array: a finite ordered set of homogeneous elements

• Array elements are arranged in rows and can be accessed randomly in
memory.

• Arrays have adjacent/adjacent addresses depending on the width of
the data type.

• Arrays can be 1-dimensional, 2-dimensional, or even n-dimensional
arrays.

• Array elements are of the same data type and can contain the same
or different values.

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 2

char: 1-Dimensional Array Illustration

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 3

0 1 2 3 4 5 6 7

21da 21db 21dc 21dd 21de 21df 21e0 21e1

indeks

value

alamat

int: 1-Dimensional Array Illustration

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 4

0 1 2 3 4 5 6 7

21d2 21d4 21d6 21d8 21da 21dc 21de 21e0

indeks

value

alamat

Array Elements: Accessing

• Array elements can be accessed by the program using a certain index
randomly or sequentially

• Filling in and retrieving values for a particular index can be done by
setting the value or displaying the value for the index in question.

• In C, there is no error handling regarding index value limits, whether
the index is within a defined array index or not. This is the
programmer's responsibility. So if the programmer accesses the
wrong index, the resulting value will be different or damaged because
it accesses an inappropriate memory address.

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 5

1-dimensional array: Example

char letter[9];
int age[10];
int condition[2] = {0,1}
int arr_dynamic[] = {1,2,3}
• The [] sign is also called the "th element...". For example, condition[0]

means the zeroth element of the condition array.
• Arrays that have been ordered, for example, 10 places do not have to be

filled in, they can only be filled with 5 elements, either sequentially or not.
However, in the condition that it is not filled, there are still 10 booking
places in memory, so places that are not filled will still be booked and left
empty.

• We cannot declare a dynamic array without initialisation!

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 6

Other examples

• How to input and display arrays?

• Manipulation of 1-dimensional arrays?

• Arrays without initialisation are displayed immediately?

• Array initialised with 0?

• Array initialisation only the first 2 elements?

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 7

Array: Input-output

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 8

Array: Manipulation

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 9

Initialisation

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 10

Array: Operations

• Addition of array elements

• Displays array elements

• Search for array elements
• Search, if found, say FOUND!

• Removal of array elements
• Search, if found then delete!

• Editing array elements
• Search, if found then edit!

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 11

2-dimensional array

• char a[3][5]

• The same as a 3×5 matrix

• In reality (memory, RAM):

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 12

2-dimensional array: Illustration

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 13

Array: Addressing

• Question: int A[10], it’s known that &A[0] = H1000
• What is &A[7]?

• Answer:
• int is 2 bytes in size
• Displacement 7-0 = 7 * 2 bytes = 14 bytes
• Then H1000 + 7 = H100E

• Question: int A[3][5], &A[0][0] = H1000
• What is &A[2][3]?

• Answer:
• int 2 bytes
• Row shift: 2-0 = 2 * 5 (its column) = 10
• Column shift: 3-0 = 3
• Total displacement: 10 + 3 = 13 * 2 bytes = 26 bytes
• Then H1000 + H101A = H101A

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 14

Searching

• Data often requires re-reading information (information retrieval) by
searching.

• Searching is searching for data by tracing the data.

• The data search location can be an array in memory, it can also be a
file on external storage.

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 15

Sequential Search

• It is a data search technique in an array (1-dimension) that will search
all the array elements from start to finish, where the data does not
need to be sorted first.

• The best possibility (best case) is if the data sought is located at the
leading array index (first array element) so that the time needed to
search for data is very short (minimal).

• The worst case is if the data being searched for is located at the last
array index (last array element) so that the time required to search for
data is very long (maximum).

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 16

Sequential Search (continued)

• For example, there is a one-dimensional array as follows:

• Then the program will ask for the data to be searched, for example, 6.

• If it is there, it will display the words “FOUND", whereas if it is not
there it will display the words "NOT FOUND".

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 17

8 10 6 -2 11 7 1 100

0 1 2 3 4 5 6 7

21da 21db 21dc 21dd 21de 21df 21e0 21e1

indeks

value

alamat

Sequential Search: Program

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 18

Program: Discussion

• The program uses a flag variable which is useful for indicating
whether or not the data being searched for is present in the data
array. Only valued 0 or 1.

• The flag is first initialised with the value 0.

• If found, the flag will be set to 1, if not, the flag will remain at 0.

• All elements of the data array will be compared one by one with the
data searched for and entered by the user.

• Question: What if the data you are looking for is found and queried at
what index?

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 19

Q & A

• Question: Is the method above efficient? If there are 10,000 data and
all data is guaranteed to be unique?

• Solution: To increase efficiency, if the data you are looking for has
been found, the loop must stop!
• Hint: Use break!

• Question: How do I count how many data in an array are non-unique,
whose value is the same as the data the user is looking for?
• Hint: Use a counter variable with a value a will always increase if any data is

found!

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 20

Example

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 21

Sequential Search with Sentinel

• Consider the following data array:

• There are 6 pieces of data in the array (from index 0 to 5) and there is 1
additional array index (6th index) which does not yet contain data (called
sentinel)

• The array at index 6 is useful for keeping data indexes at indexes 0 to 5
only. If the data search has reached the 6th array index, it means the data
DOES NOT EXIST, whereas if the search does not reach the 6th index, then
the data EXISTS.

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 22

3 12 9 -4 21 6

0 1 2 3 4 5 6 indeks

value

Sequential Search with Sentinel: Program

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 23

Binary Search

• Existing data must first be sorted based on a certain sequence which is used as
the search key.

• It is a deep data search technique by dividing the data into two parts each time
the search process occurs.

• The principles of binary search are:
• Data is taken from position 1 to end position N
• Then find the middle data position with the formula: (start position + end position) / 2
• Then the data sought is compared with the data in the middle, is it the same, smaller, or

larger?
• If it is greater, then the search process is searched with the starting position being the middle

position + 1
• If it is smaller, then the search process is searched with the final position being the middle

position – 1
• If the data is the same, it means they met.

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 24

Binary Search: Illustration

• Example: Data

• For example, the data you are looking for is 17

• 0 1 2 3 4 5 6 7 8

• 3 9 11 12 15 17 23 31 35

• A B C

• Because 17 > 15 (middle data), then: beginning = middle + 1

• 0 1 2 3 4 5 6 7 8

• 3 9 11 12 15 17 23 31 35

• A B C

• Because 17 < 23 (middle data), then: end = middle – 1

• 0 1 2 3 4 5 6 7 8

• 3 9 11 12 15 17 23 31 35

• A=B=C

• Because 17 = 17 (middle data), then it’s FOUND!

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 25

Binary Search: Program

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 26

Interpolation Search

• This technique is carried out on data that has been sorted based on certain
keys

• This searching technique is carried out by estimating the location of the
data.
• Illustrative example: if we want to look for a name in a telephone book, for example,

one that starts with the letter T, then we will not look for it from the beginning of the
book, but we will immediately open it at 2/3 or ¾ of the book's thickness.

• The formula for the relative position of the search key is calculated using
the formula:

position =
𝑘𝑒𝑦−𝑑𝑎𝑡𝑎[𝑙𝑜𝑤]

𝑑𝑎𝑡𝑎 ℎ𝑖𝑔ℎ −𝑑𝑎𝑡𝑎[𝑙𝑜𝑤]
× (high – low) + low

• If data[position] > data sought, high = pos – 1
• If data[position] < data sought, low = pos + 1

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 27

Interpolation Search: Case study

• For example, there is data as follows:

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 28

Kode Judul Buku Pengarang

025 The C++ Programming James Wood

034 Mastering Delphi 6 Marcopolo

041 Professional C# Simon Webe

056 Pure JavaScript v2 Michael Bolton

063 Advanced JSP & Servlet David Dunn

072 Calculus Make it Easy Gunner Christian

088 Visual Basic 2005 Express Antonie

096 Artificial Life : Volume 1 Gloria Virginia

Case study: Solution

• Search Key? 088

• Low? 0

• High? 7

• Position = (088 - 025) / (096 - 025) * (7 - 0) + 0 = [6]

• Key[6] = search key, data found: Visual Basic 2005

• Search Key? 060

• Low? 0

• High? 7

• Position = (060 – 025) / (096 – 025) * (7 – 0) + 0 = [3]

• Key[3] < search key, then continue

• Low = 3 + 1 = 4

• High = 7

• It turns out that Key[4] is 063 which is greater than 060.

• It means there is no 060 key.

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 29

Case study: Program

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 30

Exercise

• Find out about how to use search websites (search engines) on the
Internet and its technology!

• Find out about Fibonacci Search!

• NEXT: Sorting Arrays!

06.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 31

	Slide 1: 2023/2024(2) EF234201 Data Structure Lecture #2 Array: Searching
	Slide 2: Array: Definition
	Slide 3: char: 1-Dimensional Array Illustration
	Slide 4: int: 1-Dimensional Array Illustration
	Slide 5: Array Elements: Accessing
	Slide 6: 1-dimensional array: Example
	Slide 7: Other examples
	Slide 8: Array: Input-output
	Slide 9: Array: Manipulation
	Slide 10: Initialisation
	Slide 11: Array: Operations
	Slide 12: 2-dimensional array
	Slide 13: 2-dimensional array: Illustration
	Slide 14: Array: Addressing
	Slide 15: Searching
	Slide 16: Sequential Search
	Slide 17: Sequential Search (continued)
	Slide 18: Sequential Search: Program
	Slide 19: Program: Discussion
	Slide 20: Q & A
	Slide 21: Example
	Slide 22: Sequential Search with Sentinel
	Slide 23: Sequential Search with Sentinel: Program
	Slide 24: Binary Search
	Slide 25: Binary Search: Illustration
	Slide 26: Binary Search: Program
	Slide 27: Interpolation Search
	Slide 28: Interpolation Search: Case study
	Slide 29: Case study: Solution
	Slide 30: Case study: Program
	Slide 31: Exercise

