
2023/2024(2)
EF234201 Data Structure

Lecture #4

Array: Stack & Queue
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти



Towers of Hanoi

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 2



Towers of Hanoi (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 3



Towers of Hanoi (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 4



Towers of Hanoi (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 5



Towers of Hanoi (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 6



Towers of Hanoi (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 7



Towers of Hanoi (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 8



Towers of Hanoi (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 9



Towers of Hanoi: The Code

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 10



Stack: The Definition

• A data collection arrangement where data can be added and deleted 
is always done at the end of the data, which is called the top of the 
stack (TOS)

• Stack is LIFO (Last In First Out)
• The last object to enter the stack will be the first to leave the stack

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 11

TV TV

VCD

Compo

TV

VCD

Compo

TV

VCD

Compo



Last In First Out

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 12

B

A

D

C

B

A

C

B

A

D

C

B

A

E

D

C

B

A
top

top

top

top

top

A

top

pop(E)push(A)

push(B)

push(C)

push(D)



Stack: The Application

• Real life
• Pile of books (stack of books)

• Plate trays (stacks of plates)

• More applications related to computer science
• Program execution stack (read more from your text)

• Evaluating expressions

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 13



Stack: The Operation

• Push: used to add items to the stack at the top of the stack

• Pop: used to take items on the stack at the top of the stack

• Clear: used to clear the stack

• IsEmpty: function used to check whether the stack is empty

• IsFull: function used to check whether the stack is full

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 14

4

3

2

1

1

2

3

4

O

U

T

I

N



Stack with Array of Structs

• Define a Stack using a struct

• Define the MAX_STACK constant to store the maximum contents of 
the stack

• The Stack struct element is an array of data and the top indicates the 
top data position

• Create a stacked variable as an implementation of the Stack struct

• Declare the operations/functions above and implement them

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 15



Stack: The Program

• Example of MAX_STACK declaration
#define MAX_STACK 10

• Example of STACK declaration with struct and data array
typedef struct myStruct {

 int top;

 int data[10];

} STACK;

• Declare/create variables from structs
STACK stack;

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 16



Stack: The Program (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 17



Stack: The Program (continued)

• Initialization: init()
• Initially fill the top with -1, because arrays in C language start from 0, which 

means that the data stack is EMPTY!

• Top is a marker variable in the Stack that indicates the top element of the 
current Stack data. Top of Stack will always move until it reaches the 
MAX_STACK which causes the stack to be FULL

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 18



Stack: The Program (continued)

• isFull()
• To check whether the stack is full?

• By checking the Top of Stack
• If it is the same as MAX_STACK-1 then it is full

• If not (it’s still smaller than MAX_STACK-1) then it is not full

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 19



Stack: The Program (continued)

• isEmpty()
• To check whether the Stack data is still empty

• By checking the Top of Stack, if it is still -1 then it means the Stack data is still 
empty!

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 20



Stack: The Program (continued)

• push()
• To insert elements into Stack data. The input data is always the top element 

of the Stack (which is pointed by ToS, Top of Stack)

• If the data is not yet full,
• Add one (increment) value to the Top of Stack first every time there is an addition to the 

Stack data array.

• Fill the new data into the stack based on the Top of Stack index that was previously 
incremented.

• If not, output “Full”

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 21



Stack: The Program (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 22



Stack: The Program (continued)

• pop()
• To retrieve Stack data at the top (data which is pointed by ToS, Top of Stack)

• First, display the value of the top element of the stack by accessing its index 
according to the Top of Stack, then decrease the value of the Top of Stack so 
that the number of stack elements is reduced

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 23



Stack: The Program (continued)

• printStack()
• To display all of Stack data elements

• By looping all the array values in reverse, because we have to access from the 
highest array index first and then to the smaller index!

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 24



Stack: The Program (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 25



Stack: The Program (continued)

• peek()
• Used to see/pick the ToS, Top of Stack

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 26



Case Study: Scientific Calculator

• Suppose the operation is: 3 + 2 * 5

• The above operation is called infix notation

• The infix notation must first be changed to postfix notation

• 3 + 2 * 5 → postfix notation is 3 2 5 * +

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 27



Case Study: Scientific Calculator (continued)

• Read the input from the front to the back

• If it is an operand, then enter it into postfix

• If it is an operator, then:
• If the stack is still empty, push to the stack
• If the degree of the problem operator > the degree of the ToS (Top of Stack) operator

• Push the input operator to the stack
• As long as the problem operator degree <= ToS operator degree

• Pop the ToS and insert it into the postfix
• After everything is done, push the input operator to the stack

• If you have read all the input, pop all the contents of the stack and push them to 
postfix in the correct order

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 28

3 + 2 * 5

stack

postfix



Case Study: Scientific Calculator (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 29

postfix postfix

postfix postfix



Another example

• a+b*c-d
• Stack (empty) and Postfix (empty)

• Scan a
• Postfix: a

• Scan +
• Stack: +

• Scan b
• Postfix: ab

• Scan *, because ToS (+) < *, then add to Stack
• Stack: +*

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 30



Another example (continued)

• Scans c
• Postfix: abc

• Scan –, because * > -, then pop Stack, and add to Postfix
• Stack: +
• Postfix: abc*
• Because + >= -, then pop Stack, and add to Postfix, because Stack is empty, then push – to 

stack
• Stacks: -
• Postfix: abc*+

• Scan d
• Postfix: abc*+d

• Since it’s running out, pop the ToS stack into Postfix
• Postfix: abc*+d-

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 31



Postfix Evaluator

• Scan the Postfix string from the left to the right

• Prepare an empty stack

• If the input is an operand, add it to the stack. If it is an operator, then 
there will be at least 2 operands on the stack
• Pop the stack twice, the first pop is stored in y, and the second pop is stored 

in x. Then evaluate x <operator> y. Save the result and push it onto the stack 
again.

• Repeat until all inputs have been scanned

• If everything is done, the last element on the stack is the result.

• If there is more than one element, it means an error occurs!

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 32



Example: 325*+

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 33

postfix postfix



Queue

• What's the difference between Stack and Queue?
• Stack – a container that allows push and pop

• Queue – a container that allows enqueue and dequeue

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 34



Queue: The Definition & Operation

• Queue: A list with the restriction that insertions are done at one end 
and deletions are done at the other
• First-In, First-Out (FIFO)
• Elements are stored in order of insertion but don't have indexes.
• Client can only add to the end of the queue, and can only examine/remove 

the front of the queue.

• Basic queue operations:
• Add (enqueue): Add an element to the back.
• Remove (dequeue): Remove the front element.
• Peek: Examine the elements at the front.

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 35



Queue: The Applications

• Real-life examples
• Waiting in line

• Waiting on hold for tech support

• Applications related to Computer Science
• Threads

• Job scheduling (e.g. Round-Robin algorithm for CPU allocation)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 36



Queue: In Computer Science

• Operating systems:
• Queue of print jobs to send to the printer

• Queue of programs/processes to be run

• Queue of network data packets to send

• Programming:
• Modelling a line of customers or clients

• Storing a queue of computations to be performed in order

• Real-world examples:
• People on an escalator or waiting in a line

• Cars at a gas station (or on an assembly line)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 37



Queue: Linear Array

• There is one entrance at one end and one exit at the other end

• So it requires 2 variables: Head and Tail

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 38



Queue: Using Array

• FIFO (First In First Out)

• The element that enters the queue first will be the first to exit

• DEQUEUE is removing one element from a Queue

• Queues can be created using: Linear Array and Circular Array

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 39



FIFO: First In First Out

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 40

A

B

A

C

B

A

D

C

B

A

D

C

B
front
rear

front

rear

front

rear

front

rear

front

rear



Queue: The Operations

• A queue is like a line of persons waiting for some bank’s services by a 
bank teller

• The queue has a front and a rear

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 41

$ $ 

FrontRear Bank TellerWaiting persons



Queue: The Operations (continued)

• An incoming person must enter the queue at the rear

• It’s usually called an enqueue operation

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 42

$ $ 

Front Bank TellerWaiting personsRear



Queue: The Operations (continued)

• When an item is taken from the queue, it always comes from the 
front

• It’s usually called a dequeue operation

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 43

$ $ 

Bank TellerRear FrontWaiting persons



Queue: The Examples

• Queue: First In First Out (FIFO)

• Toll Stations
• Car comes, pays, leaves

• Check-out at Big Y market
• Customer comes, checks out and leaves

• More examples: Printer, Office Hours, …

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 44

ABCD OutputInput



Queue: More Examples

• In our daily life
• Airport Security Check

• Cinema Ticket Office

• Banks, ATMs

• Anything else?

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 45



Queue: What is All About?

• Queue is an Abstract Data Type (ADT)

• Adding an entry at the rear

• Deleting an entry at the front

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 46

frontrear

Adding Deleting
ABC



Queue: Abstract Data Type (ADT)

• Queues

• Operating on both ends

• Operations: EnQueue(in), DeQueue(out)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 47

frontrear

EnQueue DeQueue
ABC



Queue: The Mechanism

• Queue is FIFO (First-In First-Out)

• A queue is open at two ends
• You can only add entry (EnQueue) at the rear, and delete entry (DeQueue) at 

the front.

• Note:
• You cannot add/extract entries in the middle of the queue!

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 48



Queue: Other Applications

• Printing Job Management

• Packet Forwarding in Routers

• Message queue in Windows

• I/O buffers

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 49



Printing Job Management

• Many users send their printing jobs to a public printer

• The printer will put them into a queue according to the arrival time 
and print the jobs one by one

• These printing documents are A.doc, B.doc, C.doc and D.doc

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 50



Printing Queue

• A.doc, B.doc, and C.doc arrive at the printer

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 51
51

Now printing A.doc

A.doc is finished. Now printing B.doc

Now still printing B.docD.doc comes

ABC

BC

BCD

CD

D

B.doc is finished. Now printing C.doc

C.doc is finished. Now printing D.doc



Printing Queue: FIFO

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 52

When we enqueue 
entries in the queue and 
then dequeue them one 
by one, we will get the 
items in the same order

The first one 
enqueued is the first 
one dequeued (FIFO)

ABC

A

AB

BC

C

A, B, C come in

A, B, C come out



Queue: The Operation Example

• Empty Queue

• Enqueue(70)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 53



Queue: The Operation Example (continued)

• Enqueue(80)

• Enqueue(50)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 54



Queue: The Operation Example (continued)

• Dequeue()

• Dequeue()

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 55



Queue: The Operation Example (continued)

• Enqueue(90)

• Enqueue(60)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 56



Queue: The Code

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 57



Queue: The Code Explanation

create()

• To create and initialize the queue

• By making head and tail = -1

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 58



Queue: The Code Explanation (continued)

• The first queue condition

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 59

0 1 2 3 4 5 6 7

head = -1

tail = -1
MAX = 8



Queue: The Code Explanation (continued)

isEmpty()

• To check whether the queue is empty or not

• By checking the tail value, if tail = -1 then it is empty

• We do not check the head, because head is an indicator for the head 
of the queue (the first element in the queue) which will not change

• Movement in the queue occurs by adding queue elements 
backwards, i.e., by using the tail value

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 60



Queue: The Code Explanation (continued)

• The queue is empty, because the tail = -1

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 61

0 1 2 3 4 5 6 7

head = -1

tail = -1
MAX = 8



Queue: The Code Explanation (continued)

isFull()

• To check whether the queue is full or not

• By checking the value of tail, if tail >= MAX-1 (because MAX-1 is the 
limit of array elements in C) it means it is full

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 62



Queue: The Code Explanation (continued)

• The queue is full, because the tail = MAX-1

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 63

4 45 1 8 5 12 7 78

0 1 2 3 4 5 6 7

head = 0
tail = 7 MAX = 8



Queue: The Code Explanation (continued)

enQueue()

• To add an element to the queue, the added element is always added 
to the last element

• Adding elements always moves the tail variable by incrementing the 
tail counter first

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 64



Queue: The Code Explanation (continued)

• The queue after enQueue(8) has executed

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 65

4 45 1 8

0 1 2 3 4 5 6 7

head = 0
tail = 3 MAX = 8



Queue: The Code Explanation (continued)

deQueue()

• Used to delete the leading/first element (head) from the queue

• By shifting all queue elements forward and reducing the tail with 1

• Shifting is done by using looping

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 66



Queue: The Code Explanation (continued)

• The queue after deQueue() has executed

• Then, all of element are shifted to the left (move forward)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 67

4 45 1 8

0 1 2 3 4 5 6 7

head = 0
tail = 3 MAX = 8

45 1 8

0 1 2 3 4 5 6 7

head = 0
tail = 3tail = 2

MAX = 8



Queue: The Code Explanation (continued)

clearQueue()

• To delete the queue elements by making tail and head = -1

• Deleting the queue elements does not delete the array, but only sets 
the access index to -1 so that the queue elements are no longer 
readable

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 68



Queue: The Code Explanation (continued)

• The queue after clearQueue() has executed

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 69

4 45 1 8

0 1 2 3 4 5 6 7

head = -1

tail = -1
MAX = 8



Queue: The Code Explanation (continued)

printQueue()

• To display the queue element values

• Using looping from the head to the tail

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 70



Exercise

• Add a function to search for an element in the queue & stack

• Add a function to edit an element in the queue & stack

• Find the total, average, greatest and smallest values of the queue 
elements in a separate function

NEXT: Introduction to pointers and functions by reference

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 71


	Slide 1: 2023/2024(2) EF234201 Data Structure Lecture #4 Array: Stack & Queue
	Slide 2: Towers of Hanoi
	Slide 3: Towers of Hanoi (continued)
	Slide 4: Towers of Hanoi (continued)
	Slide 5: Towers of Hanoi (continued)
	Slide 6: Towers of Hanoi (continued)
	Slide 7: Towers of Hanoi (continued)
	Slide 8: Towers of Hanoi (continued)
	Slide 9: Towers of Hanoi (continued)
	Slide 10: Towers of Hanoi: The Code
	Slide 11: Stack: The Definition
	Slide 12: Last In First Out
	Slide 13: Stack: The Application
	Slide 14: Stack: The Operation
	Slide 15: Stack with Array of Structs
	Slide 16: Stack: The Program
	Slide 17: Stack: The Program (continued)
	Slide 18: Stack: The Program (continued)
	Slide 19: Stack: The Program (continued)
	Slide 20: Stack: The Program (continued)
	Slide 21: Stack: The Program (continued)
	Slide 22: Stack: The Program (continued)
	Slide 23: Stack: The Program (continued)
	Slide 24: Stack: The Program (continued)
	Slide 25: Stack: The Program (continued)
	Slide 26: Stack: The Program (continued)
	Slide 27: Case Study: Scientific Calculator
	Slide 28: Case Study: Scientific Calculator (continued)
	Slide 29: Case Study: Scientific Calculator (continued)
	Slide 30: Another example
	Slide 31: Another example (continued)
	Slide 32: Postfix Evaluator
	Slide 33: Example: 325*+
	Slide 34: Queue
	Slide 35: Queue: The Definition & Operation
	Slide 36: Queue: The Applications
	Slide 37: Queue: In Computer Science
	Slide 38: Queue: Linear Array
	Slide 39: Queue: Using Array
	Slide 40: FIFO: First In First Out
	Slide 41: Queue: The Operations
	Slide 42: Queue: The Operations (continued)
	Slide 43: Queue: The Operations (continued)
	Slide 44: Queue: The Examples
	Slide 45: Queue: More Examples
	Slide 46: Queue: What is All About?
	Slide 47: Queue: Abstract Data Type (ADT)
	Slide 48: Queue: The Mechanism
	Slide 49: Queue: Other Applications
	Slide 50: Printing Job Management
	Slide 51: Printing Queue
	Slide 52: Printing Queue: FIFO
	Slide 53: Queue: The Operation Example
	Slide 54: Queue: The Operation Example (continued)
	Slide 55: Queue: The Operation Example (continued)
	Slide 56: Queue: The Operation Example (continued)
	Slide 57: Queue: The Code
	Slide 58: Queue: The Code Explanation
	Slide 59: Queue: The Code Explanation (continued)
	Slide 60: Queue: The Code Explanation (continued)
	Slide 61: Queue: The Code Explanation (continued)
	Slide 62: Queue: The Code Explanation (continued)
	Slide 63: Queue: The Code Explanation (continued)
	Slide 64: Queue: The Code Explanation (continued)
	Slide 65: Queue: The Code Explanation (continued)
	Slide 66: Queue: The Code Explanation (continued)
	Slide 67: Queue: The Code Explanation (continued)
	Slide 68: Queue: The Code Explanation (continued)
	Slide 69: Queue: The Code Explanation (continued)
	Slide 70: Queue: The Code Explanation (continued)
	Slide 71: Exercise

