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Towers of Hanoi
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Towers of Hanoi (continued)
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Towers of Hanoi (continued)
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Towers of Hanoi (continued)
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Towers of Hanoi (continued)
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Towers of Hanoi (continued)
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Towers of Hanoi (continued)
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Towers of Hanoi (continued)
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Towers of Hanoi: The Code
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Stack: The Definition

• A data collection arrangement where data can be added and deleted 
is always done at the end of the data, which is called the top of the 
stack (TOS)

• Stack is LIFO (Last In First Out)
• The last object to enter the stack will be the first to leave the stack
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Last In First Out
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Stack: The Application

• Real life
• Pile of books (stack of books)

• Plate trays (stacks of plates)

• More applications related to computer science
• Program execution stack (read more from your text)

• Evaluating expressions
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Stack: The Operation

• Push: used to add items to the stack at the top of the stack

• Pop: used to take items on the stack at the top of the stack

• Clear: used to clear the stack

• IsEmpty: function used to check whether the stack is empty

• IsFull: function used to check whether the stack is full
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Stack with Array of Structs

• Define a Stack using a struct

• Define the MAX_STACK constant to store the maximum contents of 
the stack

• The Stack struct element is an array of data and the top indicates the 
top data position

• Create a stacked variable as an implementation of the Stack struct

• Declare the operations/functions above and implement them
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Stack: The Program

• Example of MAX_STACK declaration
#define MAX_STACK 10

• Example of STACK declaration with struct and data array
typedef struct myStruct {

 int top;

 int data[10];

} STACK;

• Declare/create variables from structs
STACK stack;
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Stack: The Program (continued)
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Stack: The Program (continued)

• Initialization: init()
• Initially fill the top with -1, because arrays in C language start from 0, which 

means that the data stack is EMPTY!

• Top is a marker variable in the Stack that indicates the top element of the 
current Stack data. Top of Stack will always move until it reaches the 
MAX_STACK which causes the stack to be FULL
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Stack: The Program (continued)

• isFull()
• To check whether the stack is full?

• By checking the Top of Stack
• If it is the same as MAX_STACK-1 then it is full

• If not (it’s still smaller than MAX_STACK-1) then it is not full
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Stack: The Program (continued)

• isEmpty()
• To check whether the Stack data is still empty

• By checking the Top of Stack, if it is still -1 then it means the Stack data is still 
empty!
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Stack: The Program (continued)

• push()
• To insert elements into Stack data. The input data is always the top element 

of the Stack (which is pointed by ToS, Top of Stack)

• If the data is not yet full,
• Add one (increment) value to the Top of Stack first every time there is an addition to the 

Stack data array.

• Fill the new data into the stack based on the Top of Stack index that was previously 
incremented.

• If not, output “Full”
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Stack: The Program (continued)
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Stack: The Program (continued)

• pop()
• To retrieve Stack data at the top (data which is pointed by ToS, Top of Stack)

• First, display the value of the top element of the stack by accessing its index 
according to the Top of Stack, then decrease the value of the Top of Stack so 
that the number of stack elements is reduced
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Stack: The Program (continued)

• printStack()
• To display all of Stack data elements

• By looping all the array values in reverse, because we have to access from the 
highest array index first and then to the smaller index!
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Stack: The Program (continued)
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Stack: The Program (continued)

• peek()
• Used to see/pick the ToS, Top of Stack
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Case Study: Scientific Calculator

• Suppose the operation is: 3 + 2 * 5

• The above operation is called infix notation

• The infix notation must first be changed to postfix notation

• 3 + 2 * 5 → postfix notation is 3 2 5 * +
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Case Study: Scientific Calculator (continued)

• Read the input from the front to the back

• If it is an operand, then enter it into postfix

• If it is an operator, then:
• If the stack is still empty, push to the stack
• If the degree of the problem operator > the degree of the ToS (Top of Stack) operator

• Push the input operator to the stack
• As long as the problem operator degree <= ToS operator degree

• Pop the ToS and insert it into the postfix
• After everything is done, push the input operator to the stack

• If you have read all the input, pop all the contents of the stack and push them to 
postfix in the correct order
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Case Study: Scientific Calculator (continued)
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Another example

• a+b*c-d
• Stack (empty) and Postfix (empty)

• Scan a
• Postfix: a

• Scan +
• Stack: +

• Scan b
• Postfix: ab

• Scan *, because ToS (+) < *, then add to Stack
• Stack: +*
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Another example (continued)

• Scans c
• Postfix: abc

• Scan –, because * > -, then pop Stack, and add to Postfix
• Stack: +
• Postfix: abc*
• Because + >= -, then pop Stack, and add to Postfix, because Stack is empty, then push – to 

stack
• Stacks: -
• Postfix: abc*+

• Scan d
• Postfix: abc*+d

• Since it’s running out, pop the ToS stack into Postfix
• Postfix: abc*+d-
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Postfix Evaluator

• Scan the Postfix string from the left to the right

• Prepare an empty stack

• If the input is an operand, add it to the stack. If it is an operator, then 
there will be at least 2 operands on the stack
• Pop the stack twice, the first pop is stored in y, and the second pop is stored 

in x. Then evaluate x <operator> y. Save the result and push it onto the stack 
again.

• Repeat until all inputs have been scanned

• If everything is done, the last element on the stack is the result.

• If there is more than one element, it means an error occurs!
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Example: 325*+
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Queue

• What's the difference between Stack and Queue?
• Stack – a container that allows push and pop

• Queue – a container that allows enqueue and dequeue
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Queue: The Definition & Operation

• Queue: A list with the restriction that insertions are done at one end 
and deletions are done at the other
• First-In, First-Out (FIFO)
• Elements are stored in order of insertion but don't have indexes.
• Client can only add to the end of the queue, and can only examine/remove 

the front of the queue.

• Basic queue operations:
• Add (enqueue): Add an element to the back.
• Remove (dequeue): Remove the front element.
• Peek: Examine the elements at the front.
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Queue: The Applications

• Real-life examples
• Waiting in line

• Waiting on hold for tech support

• Applications related to Computer Science
• Threads

• Job scheduling (e.g. Round-Robin algorithm for CPU allocation)
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Queue: In Computer Science

• Operating systems:
• Queue of print jobs to send to the printer

• Queue of programs/processes to be run

• Queue of network data packets to send

• Programming:
• Modelling a line of customers or clients

• Storing a queue of computations to be performed in order

• Real-world examples:
• People on an escalator or waiting in a line

• Cars at a gas station (or on an assembly line)
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Queue: Linear Array

• There is one entrance at one end and one exit at the other end

• So it requires 2 variables: Head and Tail
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Queue: Using Array

• FIFO (First In First Out)

• The element that enters the queue first will be the first to exit

• DEQUEUE is removing one element from a Queue

• Queues can be created using: Linear Array and Circular Array
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FIFO: First In First Out
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Queue: The Operations

• A queue is like a line of persons waiting for some bank’s services by a 
bank teller

• The queue has a front and a rear
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Queue: The Operations (continued)

• An incoming person must enter the queue at the rear

• It’s usually called an enqueue operation
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Queue: The Operations (continued)

• When an item is taken from the queue, it always comes from the 
front

• It’s usually called a dequeue operation
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Queue: The Examples

• Queue: First In First Out (FIFO)

• Toll Stations
• Car comes, pays, leaves

• Check-out at Big Y market
• Customer comes, checks out and leaves

• More examples: Printer, Office Hours, …
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Queue: More Examples

• In our daily life
• Airport Security Check

• Cinema Ticket Office

• Banks, ATMs

• Anything else?
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Queue: What is All About?

• Queue is an Abstract Data Type (ADT)

• Adding an entry at the rear

• Deleting an entry at the front
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Queue: Abstract Data Type (ADT)

• Queues

• Operating on both ends

• Operations: EnQueue(in), DeQueue(out)
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Queue: The Mechanism

• Queue is FIFO (First-In First-Out)

• A queue is open at two ends
• You can only add entry (EnQueue) at the rear, and delete entry (DeQueue) at 

the front.

• Note:
• You cannot add/extract entries in the middle of the queue!
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Queue: Other Applications

• Printing Job Management

• Packet Forwarding in Routers

• Message queue in Windows

• I/O buffers
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Printing Job Management

• Many users send their printing jobs to a public printer

• The printer will put them into a queue according to the arrival time 
and print the jobs one by one

• These printing documents are A.doc, B.doc, C.doc and D.doc
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Printing Queue

• A.doc, B.doc, and C.doc arrive at the printer
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Printing Queue: FIFO
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Queue: The Operation Example

• Empty Queue

• Enqueue(70)
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Queue: The Operation Example (continued)

• Enqueue(80)

• Enqueue(50)
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Queue: The Operation Example (continued)

• Dequeue()

• Dequeue()
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Queue: The Operation Example (continued)

• Enqueue(90)

• Enqueue(60)
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Queue: The Code
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Queue: The Code Explanation

create()

• To create and initialize the queue

• By making head and tail = -1
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Queue: The Code Explanation (continued)

• The first queue condition
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Queue: The Code Explanation (continued)

isEmpty()

• To check whether the queue is empty or not

• By checking the tail value, if tail = -1 then it is empty

• We do not check the head, because head is an indicator for the head 
of the queue (the first element in the queue) which will not change

• Movement in the queue occurs by adding queue elements 
backwards, i.e., by using the tail value
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Queue: The Code Explanation (continued)

• The queue is empty, because the tail = -1

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 61

0 1 2 3 4 5 6 7

head = -1

tail = -1
MAX = 8



Queue: The Code Explanation (continued)

isFull()

• To check whether the queue is full or not

• By checking the value of tail, if tail >= MAX-1 (because MAX-1 is the 
limit of array elements in C) it means it is full
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Queue: The Code Explanation (continued)

• The queue is full, because the tail = MAX-1
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Queue: The Code Explanation (continued)

enQueue()

• To add an element to the queue, the added element is always added 
to the last element

• Adding elements always moves the tail variable by incrementing the 
tail counter first
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Queue: The Code Explanation (continued)

• The queue after enQueue(8) has executed
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Queue: The Code Explanation (continued)

deQueue()

• Used to delete the leading/first element (head) from the queue

• By shifting all queue elements forward and reducing the tail with 1

• Shifting is done by using looping
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Queue: The Code Explanation (continued)

• The queue after deQueue() has executed

• Then, all of element are shifted to the left (move forward)
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Queue: The Code Explanation (continued)

clearQueue()

• To delete the queue elements by making tail and head = -1

• Deleting the queue elements does not delete the array, but only sets 
the access index to -1 so that the queue elements are no longer 
readable
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Queue: The Code Explanation (continued)

• The queue after clearQueue() has executed
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Queue: The Code Explanation (continued)

printQueue()

• To display the queue element values

• Using looping from the head to the tail
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Exercise

• Add a function to search for an element in the queue & stack

• Add a function to edit an element in the queue & stack

• Find the total, average, greatest and smallest values of the queue 
elements in a separate function

NEXT: Introduction to pointers and functions by reference
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