
2023/2024(2)
EF234201 Data Structure

Lecture #5

Pointer & Function
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти

Pointer: The Definition

• A pointer is a (pointer/pointing/indexing) variable, containing a value
that designates the address of a particular memory location

• So, the pointer does not contain data values, but instead contains a
memory address or is null if it does not contain data

• Uninitialized pointers are called dangling pointers

• The memory location can be represented by a variable or can also be
a direct memory address value

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 2

Pointer: The Illustration

• We have a variable x which contains the character value 'a’

• In the C compiler, the value 'a' will be stored at a certain address in
memory

• The address of variable x can be accessed using the &x statement

• If we want to store the address of this variable x, we can use a variable
• E.g., char address_x = &x;

• address_x is a variable that contains the address where the value x,
namely 'a' is stored

• The address_x variable is called a pointer variable or often just called a
pointer

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 3

a 0065FE17

x address_x

0065FE17

Pointer: Program Example

• Format %p is used to show the pointer address

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 4

a 0065FE17

x address_x

0065FE17

Pointer vs Regular Variable

Regular Variable Pointer

It contains the data/value It contains the address of particular variable

Operations: it uses regular operator as +, -, *, / 1. It needs a special operator & for pointing the
address of the particular variable. & operator can only
be applied to a variable. And it results in its address.
E.g., p = &a;

2. Operator *. This operator uses the value from the
address variable pointed by its variable.
E.g., int *p;

Static Dynamic

Declaration: int a; Declaration: int *a;

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 5

Pointer Operator

• Operator *
• To get the value of a pointer variable
• E.g.,

int *address;

int value = 10;

address = &value;

printf(“%d”, *address); → Result: 10

• Operator &
• To get the memory address of the pointer variable
• E.g.,

int *address;

int value = 10;

address = &value;

printf(“%p”, address); → Result: 33FF50

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 6

Example

• A pointer is declared by

data_type *pointer_variable_name;

• E.g., pointer initialisation

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 7

Rule

• A pointer variable can be declared with any data type

• Declaring a pointer variable with a certain data type is used to store a
memory address that contains data according to the declared data
type, not to contain values of a certain data type

• The data type is used as the data width for memory allocation (for
example char means the data width is 1 byte, etc.)
• If a pointer variable is declared to be of type float, it means that the pointer

variable can only be used to point to a memory address that contains a value
of type float as well

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 8

Warning Example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 9

Operations on Pointer: Assignment

• Between pointer variables, assignment operations can be carried out
• Ex. 1: Assignment and an address can be pointed to by more than one pointer

• Ex. 2: Filling a variable with the value pointed to by a pointer variable

• Ex. 3: Operate on the contents of a variable by calling its address with a
pointer

• Ex. 4: Filling and replacing the variable pointed to by the pointer

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 10

Ex. 1: Assignment and an address can be
pointed to by more than one pointer

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 11

3.14

x1 x2

y

Both x1 and x2

are pointing to y

Ex. 2: Filling a variable with the value pointed
to by a pointer variable

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 12

p is pointing to

a, not b
13

p

a

13

b

Ex. 3: Operate on the contents of a variable
by calling its address with a pointer

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 13

13

a

3 13 13

b a b

p q p q

Ex. 4: Filling and replacing the variable
pointed to by the pointer

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 14

a

13

a

p p

Operations on Pointer: Arithmetic

• On pointer, arithmetic operations can be performed that will point to
a new memory address

• Only integer values can be operated on pointer variables

• Usually only addition/subtraction operations

• For instance, if the pointer x is of type int (2 bytes), then x + 1
will point to the current address (e.g., 1000) added by sizeof(x),
i.e., 2, resulting in 1002

• See the next program example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 15

Program: Arithmetic operations on pointer

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 16

Pointer on Array

• In an array, the pointer only needs to point to the address of the first
element because the array addresses are already sequential in
memory.

• Pointer variables only need to increment

• See the next examples

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 17

1D Array

• p = a means pointer p has assigned the address of array a. The
address can be represented by the first element, i.e., a[0]

• It also can be written as p = &a[0] which means the same as p =
a

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 18

1D Array (continued)

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 19

Function: Review

• A function is a part of a program that has a unique name

• It is used to do a certain task

• It is located separately from the part of the program that uses/calls
the function

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 20

Function: Advantage

• Can use a top-down and divide-and-conquer approach: large
programs can be split into small programs

• Can be done by several people so coordination is easy

• Ease of finding errors because the logic flow is clear and errors can be
localized within a particular module

• Program modifications can be made to a particular module only
without disturbing the overall program

• Makes documentation easier

• Reusability: A function can be reused by other programs or functions

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 21

Function in C: Review

• Standard Library Functions
• These are functions that have been provided by C in its header or library files

• For instance: printf(), getch()

• For this function we must first declare the library that will be used, namely by
using the directive preprocessor: #include <stdio.h>, #include
<conio.h>

• Programmer-Defined Function
• A function created by the programmer himself

• This function has a specific name that is unique to the program

• It is located separately from the main program, and can be integrated into a
library created by the programmer which is then also included for its use

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 22

Void Function: Review

• Function that is void are often called procedure

• It is called void because the function does not return an output value
obtained from the process of the function

• Characteristic
• No return keyword
• No data type in the function declaration
• It uses the void keyword

• The result cannot be displayed immediately

• It has no function return value

• Example: printf()

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 23

Non-Void Function: Review

• Non-void function is also called function

• It is called non-void because it returns a return value that comes from the
output of the function process

• Characteristic
• There is a return keyword
• There is a data type that begins the function declaration
• No void keyword

• It has a return value

• It can be analogous to a variable that has a certain data type so that the
results can be displayed immediately

• Example: sin(), getch()

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 24

main Function: Review

• The simplest program in C, in order to be executed, must consist of at
least 1 function, namely the main() function

• When a C program is executed, the C compiler will look for the
main() function and carry out the instructions there

• It is often declared in two forms:
int main()

void main()

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 25

main Function Review: int and void

• int main() means that in the main function, there must be a
return keyword at the end of the function and it returns a value of
the data type int

• Why does the return result have to be of type int too? because the
data type that precedes the main() function above is declared int

• If a C program is executed, the program execution status will be
returned, if "terminated successfully" then the status will be returned
0, whereas if "terminated unsuccessfully" the status value will be
returned not 0

• void main() means a function that is void and does not return a
program status value so the program status value cannot be known

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 26

Argument in Function: Review

• A function can have optional arguments

• These arguments function as input parameters in the form of
variables for the function (local variable)

• Arguments must be of a specific data type

• There are 2 types of parameters:
• Formal parameters: parameters written in the function declaration

• Actual parameters: parameters entered in the program calling the function. It
can be a variable or directly a certain value according to the data type
declared for each function parameter

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 27

Argument in Function: Example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 28

x, y: formal parameter

a, b, t: local variable in main()

a, b: actual parameter

x, y: formal parameter

x, y, r: local variable in add()

Variable Scope: Review

• Global variables: known in all parts

• Local variables: known only in certain parts

• Static variable: the value is fixed and the last value will be saved

• The scope above depends on the perspective of a variable

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 29

Pass by Value: Review

• What is sent to the function is the value, not the memory address where
the data is located

• The function that receives this value will store its value at a separate
address from the original value used by the program that called the
function

• That's why changing the value in the function will not affect the original
value in the program that calls the function even though both use the same
variable name

• One-way nature of passing, from the calling program to the called function
only.

• Parameters can be expressions (statements)
• See the next example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 30

Pass by Value: Example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 31

a in aGlobal()
Value: 3

Address: 00403010

a in main()
Value: 13

Address: 0065FE1C

a in passByValue()
Value: 26

Address: 0065FDF0

a in main() after passByValue() called
Value: 13

Address: 0065FE1C

Pass by Reference: Review

• What is sent is the memory address where the data value is located, not
the data value

• Functions that receive this parameter will use/access data with the same
address as the address of the data value

• That's why changing the value in the function will also change the original
value in the program calling the function

• Passing parameters by reference is two-way passing, namely from the
calling program to the function and vice versa from the function to the
calling program

• Passing parameters by reference cannot be used for an expression
(statement), only for variables, constants or array elements

• See the next example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 32

Pass by Reference: Example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 33

a in aGlobal()
Value: 3

Address: 00403010

a in main()
Value: 13

Address: 0065FE1C

a in passByRef()
Value: 26

Address: 0065FE1C

a in main() after passByRef() called
Value: 26

Address: 0065FE1C

It uses asterisk (*)

It uses asterisk (*)
It uses the address

of its variable (&)

Array as Parameter

• Passing parameters in the form of an array is passing by reference,
what is sent is the address of the first element of the array, not all
the array values

• In formal parameters, the address of the first element of the array can
be written as the array name alone without its index (empty index)

• In actual parameters, writing is done by just writing the array name

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 34

Array as Parameter: Example

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 35

Exercise

• Create a function to calculate factorial

• Create a function to calculate the power (xy)

• Create a function to find out whether a number is a prime number or
not, then create a function to display all prime numbers from a
certain data range and use the prime number checking function that
was created previously

• NEXT:
• Pointer Implementation: Linked List

27.03.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 36

	Slide 1: 2023/2024(2) EF234201 Data Structure Lecture #5 Pointer & Function
	Slide 2: Pointer: The Definition
	Slide 3: Pointer: The Illustration
	Slide 4: Pointer: Program Example
	Slide 5: Pointer vs Regular Variable
	Slide 6: Pointer Operator
	Slide 7: Example
	Slide 8: Rule
	Slide 9: Warning Example
	Slide 10: Operations on Pointer: Assignment
	Slide 11: Ex. 1: Assignment and an address can be pointed to by more than one pointer
	Slide 12: Ex. 2: Filling a variable with the value pointed to by a pointer variable
	Slide 13: Ex. 3: Operate on the contents of a variable by calling its address with a pointer
	Slide 14: Ex. 4: Filling and replacing the variable pointed to by the pointer
	Slide 15: Operations on Pointer: Arithmetic
	Slide 16: Program: Arithmetic operations on pointer
	Slide 17: Pointer on Array
	Slide 18: 1D Array
	Slide 19: 1D Array (continued)
	Slide 20: Function: Review
	Slide 21: Function: Advantage
	Slide 22: Function in C: Review
	Slide 23: Void Function: Review
	Slide 24: Non-Void Function: Review
	Slide 25: main Function: Review
	Slide 26: main Function Review: int and void
	Slide 27: Argument in Function: Review
	Slide 28: Argument in Function: Example
	Slide 29: Variable Scope: Review
	Slide 30: Pass by Value: Review
	Slide 31: Pass by Value: Example
	Slide 32: Pass by Reference: Review
	Slide 33: Pass by Reference: Example
	Slide 34: Array as Parameter
	Slide 35: Array as Parameter: Example
	Slide 36: Exercise

