
2023/2024(2)
EF234201 Data Structure

Lecture #6

Single Linked List Non Circular
Misbakhul Munir IRFAN SUBAKTI

司馬伊凡
Мисбакхул Мунир Ирфан Субакти



Linked List: History

• Developed in 1955-1956 by Allen Newell, Cliff Shaw and Herbert 
Simon at the RAND Corporation as the main data structure for the 
Information Processing Language (IPL) language
• IPL was created to develop artificial intelligence programs, such as creating 

Chess Solver

• Victor Yngve at the Massachusetts Institute of Technology (MIT) also 
uses linked lists in natural language processing and machine 
transitions in the COMMIT programming language.

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 2



Linked List: What is It?

• Linked List is a form of data structure, containing a collection of data 
(nodes) that are arranged sequentially, interconnected, dynamic and 
limited

• Linked List are often called Chained List

• Linked Lists are connected to each other with the help of pointer 
variables

• Each data in a Linked List is called a node which occupies dynamic 
memory allocation and is usually in the form of a struct consisting of 
several fields

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 3



Array vs Linked List

Array Linked List

Static Dynamic

Limited data addition/subtraction Unlimited data addition/subtraction

Random access Sequential access

Deleting the array is impossible Easy for deleting the linked list

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 4



Single Linked List Non Circular (SLLNC)

• Single: it means that the pointer field is only one in one direction and at the end 
of the node, the pointer points to NULL

• Linked List: it means that the nodes are connected to each other

• Each node in a linked list has a field that contains a pointer to the next node, and 
also has a field that contains data

• The last node will point to NULL which will be used as a stop condition when 
reading the content of the linked list

• Keyword for NULL in C++ is nullptr

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 5

a

FFF1

data pointer

Occupies a specific memory address

b

FFF2

c

FFF3

d

FFF4

NULL



Single Linked List Non Circular: Create

• Node Declaration
typedef struct MyNode {

 int data;

 struct MyNode *next;

} TNode;

• Explanation
• Creating a struct called TNode which contains 2 fields, namely the data field 

of type integer and the next field which is of type pointer from TNode

• After creating the struct, create a head variable of type pointer from TNode 
which is useful as the head of the linked list

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 6



Single Linked List Non Circular: Create (cont’d)

• The keyword new is used which means preparing a new node along with its 
memory allocation, then the node is filled with data and the next 
pointer is pointed to NULL

• nullptr is used in C++ for NULL

 int newData;

 // …

 TNode *newNode;

 newNode = new TNode;

 newNode -> data = newData;

 newNode -> next = nullptr;

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 7



Pointer Allocation: Another Way

• Using manual memory allocation

• Use stdlib.h or malloc.h headers

• Using function:

 <pointer type> *malloc(int size);

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 8



Pointer Program Example

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 9



Headed SLLNC

• One pointer variable is required: head

• head will always point to the first node

• Single Linked List Headed Pointer Declaration
• Manipulation of linked list cannot be done directly to the destination node, 

but must use a pointer to the first node in the linked list (in this case is head)

• The declaration is as follows
TNode *head;

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 10

a

FFF1

b

FFF2

c

FFF3

d

FFF4

NULL

head



Headed SLLNC: init and isEmpty

• Single Linked List Initialization Function
void init() {

 head = nullptr;

}

• Function to find out whether Single LinkedList is empty or not
• If the head pointer does not point to a node then it is empty

int isEmpty() {

 if (head == nullptr) return 1;

 else return 0;

}

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 11

head NULL



Headed SLLNC: frontInsertion

• Added data at the front
• The addition of a new node will be linked to the frontmost node, but for the 

first time (the data is still empty), data is added in this way: the head node is 
shown to the new node

• The principle is to associate a new node with the head, then the head will 
point to the new data so that the head will always remain the leading/top 
(first) data

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 12



Headed SLLNC: frontInsertion (cont’d)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 13



Headed SLLNC: frontInsertion (cont’d)

• Illustration

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 14

3 NULLNULL

1. The list is still empty. 2. Enter the new data, e.g., 3.

3 NULL

3. Enter the new data, e.g., 13. Insertion at the front.

13 NULL

newNode head

headhead

3 NULL13

newNode head

3 NULL13

newNode head



Headed SLLNC: backInsertion

• Added data at the back
• Adding data is done at the back, but the first time, the node is directly 

appointed by the head

• This addition is more difficult because we need an aux (auxiliary) pointer to 
find out the backward node, then after that, associate it with a new node. To 
find out the most recent data, loops need to be used.

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 15



Headed SLLNC: backInsertion (cont’d)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 16



Headed SLLNC: backInsertion (cont’d)

• Illustration

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 17

3 NULLNULL

1. The list is still empty (head = NULL). 2. Enter the new data, e.g., 3.

13 NULL

3. Enter the new data, e.g., 13. Insertion at the back.

3 NULL

head newNode

headhead

13 NULL3

head

newNode

13 NULL3 NULL

head newNodeaux newNode



Headed SLLNC: backInsertion (cont’d)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 18

4. Enter the new data, e.g., 86. Insertion at the back.

13 NULL3

head

86 NULL

newNode

13 NULL3

head aux

86 NULL

newNode

133

head

86

newNode

NULL

How about the insertion at the middle?



Headed SLLNC: show

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 19

133

head

86

aux

74 NULL



Headed SLLNC: show (continued)

• The function above is used to display all the contents of the list, 
where the linked list is traced one by one from the start node to the 
end node. This search is carried out using an aux (auxiliary) pointer, 
because in principle it is a head pointer which is the initial sign of the 
list cannot change or change the position.

• The search continues until the last node is found pointing to a NULL 
value. If it is not NULL, then the aux node will move to the next 
node and read the contents of the data using the next field so that 
they can be related to each other.

• If head is still NULL it means the data is still empty

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 20



Headed SLLNC: frontDeletion

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 21

133

del

86

head

74 NULL



Headed SLLNC: frontDeletion (cont’d)

• The function above will delete the top (first) data pointed by the 
head in the linked list

• Node deletion may not be carried out if the node is being pointed at 
by a pointer, so another pointer must be used to point the node to be 
deleted, for example a del pointer and then delete the del pointer 
using the delete command

• Before the front data is deleted, the head must be shown to the next 
node first so that the list does not break, so that the node after the 
old head will become the new head (new front data)

• If head is still NULL then it means the data is still empty

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 22



Headed SLLNC:
backDeletion

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 23



Headed SLLNC: backDeletion (cont’d)

• Requires aux and del pointers

• The del pointer is used to point to the node to be deleted, and the 
aux pointer is used to point to the node before the deleted node 
which will then become the last node.

• aux pointer will be used to point to the NULL value

• aux pointer will always move until it is before the node to be deleted, 
then the del pointer is placed after the aux pointer. Further, the 
del pointer will be deleted, the aux pointer will point to NULL

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 24



Headed SLLNC: backDeletion (cont’d)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 25

133

head

86

aux

74 NULL

133

head

86

aux

74 NULL

del

133

head

86

aux

74

del

133

head

86

aux

NULL

NULL



Headed SLLNC: clear

• Function to delete all Linked List elements

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 26



SLLNC with head & tail

• Two pointer variables are required: head and tail

• head will always point to the first node, while tail will always point 
to the last node

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 27

133

head

86

tail

NULL



SLLNC with head & tail:
init and isEmpty
• LinkedList Initialization

TNode *head, *tail;

• LinkedList Initialization Function
void init() {

 head = nullptr;

 tail = nullptr;

}

• Function to find out whether the Linked List is empty or not
int isEmpty() {

 if (tail == nullptr) return 1;

 else return 0;

}

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 28



SLLNC with head & tail:
frontInsertion

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 29



SLLNC with head & tail:
frontInsertion (continued)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 30

1. The list is still empty (head = tail = NULL). 2. Enter the new data, e.g., 13.

13 NULL

3. Enter the new data, e.g., 3. Insertion at the front.

3 NULL

newNode

13 NULL3

newNode tail

NULL

head tail

13 NULL

head newNode tail

head tail head

13 NULL3

head tailnewNode



SLLNC with head & tail:
backInsertion

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 31



SLLNC with head & tail:
backInsertion (continued)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 32

1. The list is still empty (head = tail = NULL). 2. Enter the new data, e.g., 86.

74 NULL

3. Enter the new data, e.g., 74. Insertion at the back.

86 NULL

newNode

74 NULL86

newNodetail

NULL

head tail

86 NULL

head newNode tail

head tail head

74 NULL86

head tailnewNode



SLLNC with head & tail: show

• The advantage of a Single Linked List with head & tail is that when adding 
data at the back, only the tail is needed which binds the new node without 
having to use aux pointer loops

• Function to display the contents of a linked list

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 33

133

head

86

aux

74 NULL



SLLNC with head & tail:
frontDeletion

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 34



SLLNC with head & tail:
frontDeletion (continued)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 35

133

head

86

del

74 NULL

133

head

86

del

74 NULL

133

del

86

head

74 NULL

tail

tail

tail



SLLNC with head & tail:
frontDeletion (continued)
• The function above will delete the top (first) data pointed by the 

head in the linked list

• Deleting a node cannot be done if the node is being pointed at by a 
pointer, so it must be pointed first with the del pointer on the head, 
then shift the head to the next node so that the data after the head 
becomes the new head, then delete the del pointer using the delete 
command.

• If tail is still NULL then it means the data is still empty

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 36



SLLNC with head & tail: backDeletion

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 37



SLLNC with head & tail:
backDeletion (continued)

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 38

133

head

86 74 NULL

133

head

86

aux

74 NULL

133

head

86 74 NULL

tail

deltail

deltail

aux



SLLNC with head & tail:
backDeletion (continued)
• The function above will delete the last data indicated by tail in the 

linked list

• Deleting a node cannot be done if the node's state is being pointed to 
by a pointer, so it must be pointed out first with the del variable in 
the tail, then an aux pointer is needed to help shift from the 
head to the next node until before the tail, so that the tail can 
be pointed to the aux, and the aux will become the new tail. 
Furthermore, delete the del pointer using the delete command.

• If tail is still NULL then it means the data is still empty

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 39



SLLNC with head & tail: clear

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 40



Exercise

• Make a complete program from all the algorithms and functions 
above in the form of a menu to add data, view data, and delete data

• Create an additional function that is useful for searching for data in a 
linked list either with a head or with head & tail

• Create a function to delete certain data in a linked list

• Make insertion nodes after or before certain data

• NEXT
• Single Linked List Circular (SLLC) with head & tail

03.04.2024 2023/2024(2) – Data Structure | MM Irfan Subakti 41


	Slide 1: 2023/2024(2) EF234201 Data Structure Lecture #6 Single Linked List Non Circular
	Slide 2: Linked List: History
	Slide 3: Linked List: What is It?
	Slide 4: Array vs Linked List
	Slide 5: Single Linked List Non Circular (SLLNC)
	Slide 6: Single Linked List Non Circular: Create
	Slide 7: Single Linked List Non Circular: Create (cont’d)
	Slide 8: Pointer Allocation: Another Way
	Slide 9: Pointer Program Example
	Slide 10: Headed SLLNC
	Slide 11: Headed SLLNC: init and isEmpty
	Slide 12: Headed SLLNC: frontInsertion
	Slide 13: Headed SLLNC: frontInsertion (cont’d)
	Slide 14: Headed SLLNC: frontInsertion (cont’d)
	Slide 15: Headed SLLNC: backInsertion
	Slide 16: Headed SLLNC: backInsertion (cont’d)
	Slide 17: Headed SLLNC: backInsertion (cont’d)
	Slide 18: Headed SLLNC: backInsertion (cont’d)
	Slide 19: Headed SLLNC: show
	Slide 20: Headed SLLNC: show (continued)
	Slide 21: Headed SLLNC: frontDeletion
	Slide 22: Headed SLLNC: frontDeletion (cont’d)
	Slide 23: Headed SLLNC: backDeletion
	Slide 24: Headed SLLNC: backDeletion (cont’d)
	Slide 25: Headed SLLNC: backDeletion (cont’d)
	Slide 26: Headed SLLNC: clear
	Slide 27: SLLNC with head & tail
	Slide 28: SLLNC with head & tail: init and isEmpty
	Slide 29: SLLNC with head & tail: frontInsertion
	Slide 30: SLLNC with head & tail: frontInsertion (continued)
	Slide 31: SLLNC with head & tail: backInsertion
	Slide 32: SLLNC with head & tail: backInsertion (continued)
	Slide 33: SLLNC with head & tail: show
	Slide 34: SLLNC with head & tail: frontDeletion
	Slide 35: SLLNC with head & tail: frontDeletion (continued)
	Slide 36: SLLNC with head & tail: frontDeletion (continued)
	Slide 37: SLLNC with head & tail: backDeletion
	Slide 38: SLLNC with head & tail: backDeletion (continued)
	Slide 39: SLLNC with head & tail: backDeletion (continued)
	Slide 40: SLLNC with head & tail: clear
	Slide 41: Exercise

