
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

Chapter 4 – C Program Control

Outline
4.1 Introduction
4.2 The Essentials of Repetition
4.3 Counter-Controlled Repetition
4.4 The for Repetition Statement
4.5 The for Statement: Notes and Observations
4.6 Examples Using the for Statement
4.7 The switch Multiple-Selection Statement
4.8 The do…while Repetition Statement
4.9 The break and continue Statements
4.10 Logical Operators
4.11 Confusing Equality (==) and Assignment (=) Operators
4.12 Structured Programming Summary

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Objectives

• In this chapter, you will learn:
– To be able to use the for and do…while repetition statements.

– To understand multiple selection using the switch selection

statement.

– To be able to use the break and continue program control

statements

– To be able to use the logical operators.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

4.1 Introduction

• This chapter introduces

– Additional repetition control structures

• for

• Do…while

– switch multiple selection statement

– break statement

• Used for exiting immediately and rapidly from certain control

structures

– continue statement

• Used for skipping the remainder of the body of a repetition

structure and proceeding with the next iteration of the loop

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

4.2 The Essentials of Repetition

• Loop

– Group of instructions computer executes repeatedly while

some condition remains true

• Counter-controlled repetition

– Definite repetition: know how many times loop will execute

– Control variable used to count repetitions

• Sentinel-controlled repetition

– Indefinite repetition

– Used when number of repetitions not known

– Sentinel value indicates "end of data"

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

4.3 Essentials of Counter-Controlled

Repetition

• Counter-controlled repetition requires

– The name of a control variable (or loop counter)

– The initial value of the control variable

– An increment (or decrement) by which the control variable is

modified each time through the loop

– A condition that tests for the final value of the control variable (i.e.,

whether looping should continue)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

4.3 Essentials of Counter-Controlled

Repetition

• Example:
int counter = 1; // initialization

while (counter <= 10) { // repetition condition

printf("%d\n", counter);

++counter; // increment

}

– The statement

int counter = 1;

• Names counter

• Defines it to be an integer

• Reserves space for it in memory

• Sets it to an initial value of 1

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

fig04_01.c

Program Output
1
2
3
4
5
6
7
8
9
10

1 /* Fig. 4.1: fig04_01.c

2 Counter-controlled repetition */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter = 1; /* initialization */

9

10 while (counter <= 10) { /* repetition condition */

11 printf ("%d\n", counter); /* display counter */

12 ++counter; /* increment */

13 } /* end while */

14

15 return 0; /* indicate program ended successfully */

16

17 } /* end function main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

4.3 Essentials of Counter-Controlled

Repetition

• Condensed code

– C Programmers would make the program more concise

– Initialize counter to 0

• while (++counter <= 10)
printf(“%d\n, counter);

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

9

fig04_02.c

1 /* Fig. 4.2: fig04_02.c

2 Counter-controlled repetition with the for statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter; /* define counter */

9

10 /* initialization, repetition condition, and increment

11 are all included in the for statement header. */

12 for (counter = 1; counter <= 10; counter++) {

13 printf("%d\n", counter);

14 } /* end for */

15

16 return 0; /* indicate program ended successfully */

17

18 } /* end function main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

10

4.4 The for Repetition Statement

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11

4.4 The for Repetition Statement

• Format when using for loops
for (initialization; loopContinuationTest; increment)

statement

• Example:
for(int counter = 1; counter <= 10; counter++)

printf("%d\n", counter);

– Prints the integers from one to ten No

semicolon
(;) after last

expression

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

4.4 The for Repetition Statement

• For loops can usually be rewritten as while loops:
initialization;
while (loopContinuationTest) {

statement;

increment;
}

• Initialization and increment

– Can be comma-separated lists

– Example:

for (int i = 0, j = 0; j + i <= 10; j++, i++)

printf("%d\n", j + i);

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

4.5 The for Statement : Notes and

Observations

• Arithmetic expressions

– Initialization, loop-continuation, and increment can contain

arithmetic expressions. If x equals 2 and y equals 10

for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to

for (j = 2; j <= 80; j += 5)

• Notes about the for statement:

– "Increment" may be negative (decrement)

– If the loop continuation condition is initially false

• The body of the for statement is not performed

• Control proceeds with the next statement after the for statement

– Control variable

• Often printed or used inside for body, but not necessary

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14

4.5 The for Statement : Notes and

Observations

counter = 1

counter <= 10
true

false

counter = 1

counter++

Establish initial

value of control

variable

Determine if final

value of control

variable has been

reached

Body of loop

(this may be many

statements)

Increment

the control

variable

printf("%d", counter);

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15
1 /* Fig. 4.5: fig04_05.c

2 Summation with for */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int sum = 0; /* initialize sum */

9 int number; /* number to be added to sum */

10

11 for (number = 2; number <= 100; number += 2) {

12 sum += number; /* add number to sum */

13 } /* end for */

14

15 printf("Sum is %d\n", sum); /* output sum */

16

17 return 0; /* indicate program ended successfully */

18

19 } /* end function main */

fig04_05.c

Program Output

Sum is 2550

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

16

fig04_06.c (Part 1 of

2)

1 /* Fig. 4.6: fig04_06.c

2 Calculating compound interest */

3 #include <stdio.h>

4 #include <math.h>

5

6 /* function main begins program execution */

7 int main()

8 {

9 double amount; /* amount on deposit */

10 double principal = 1000.0; /* starting principal */

11 double rate = .05; /* interest rate */

12 int year; /* year counter */

13

14 /* output table column head */

15 printf("%4s%21s\n", "Year", "Amount on deposit");

16

17 /* calculate amount on deposit for each of ten years */

18 for (year = 1; year <= 10; year++) {

19

20 /* calculate new amount for specified year */

21 amount = principal * pow(1.0 + rate, year);

22

23 /* output one table row */

24 printf("%4d%21.2f\n", year, amount);

25 } /* end for */

26

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

17

fig04_06.c (Part 2

of 2)

Program Output

Year Amount on deposit
1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28
6 1340.10
7 1407.10
8 1477.46
9 1551.33

10 1628.89

27 return 0; /* indicate program ended successfully */

28

29 } /* end function main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

18

4.7 The switch Multiple-Selection

Statement

• switch

– Useful when a variable or expression is tested for all the

values it can assume and different actions are taken

• Format

– Series of case labels and an optional default case

switch (value){

case '1':

actions

case '2':

actions

default:

actions

}

– break; exits from statement

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19

4.7 The switch Multiple-Selection

Statement

• Flowchart of the switch statement

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

20

fig04_07.c (Part 1 of

3)

1 /* Fig. 4.7: fig04_07.c

2 Counting letter grades */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int grade; /* one grade */

9 int aCount = 0; /* number of As */

10 int bCount = 0; /* number of Bs */

11 int cCount = 0; /* number of Cs */

12 int dCount = 0; /* number of Ds */

13 int fCount = 0; /* number of Fs */

14

15 printf("Enter the letter grades.\n");

16 printf("Enter the EOF character to end input.\n");

17

18 /* loop until user types end-of-file key sequence */

19 while ((grade = getchar()) != EOF) {

20

21 /* determine which grade was input */

22 switch (grade) { /* switch nested in while */

23

24 case 'A': /* grade was uppercase A */

25 case 'a': /* or lowercase a */

26 ++aCount; /* increment aCount */

27 break; /* necessary to exit switch */

28

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21

fig04_07.c (Part 2 of

3)

29 case 'B': /* grade was uppercase B */

30 case 'b': /* or lowercase b */

31 ++bCount; /* increment bCount */

32 break; /* exit switch */

33

34 case 'C': /* grade was uppercase C */

35 case 'c': /* or lowercase c */

36 ++cCount; /* increment cCount */

37 break; /* exit switch */

38

39 case 'D': /* grade was uppercase D */

40 case 'd': /* or lowercase d */

41 ++dCount; /* increment dCount */

42 break; /* exit switch */

43

44 case 'F': /* grade was uppercase F */

45 case 'f': /* or lowercase f */

46 ++fCount; /* increment fCount */

47 break; /* exit switch */

48

49 case '\n': /* ignore newlines, */

50 case '\t': /* tabs, */

51 case ' ': /* and spaces in input */

52 break; /* exit switch */

53

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22

fig04_07.c (Part 3 of

3)

54 default: /* catch all other characters */

55 printf("Incorrect letter grade entered.");

56 printf(" Enter a new grade.\n");

57 break; /* optional; will exit switch anyway */

58 } /* end switch */

59

60 } /* end while */

61

62 /* output summary of results */

63 printf("\nTotals for each letter grade are:\n");

64 printf("A: %d\n", aCount); /* display number of A grades */

65 printf("B: %d\n", bCount); /* display number of B grades */

66 printf("C: %d\n", cCount); /* display number of C grades */

67 printf("D: %d\n", dCount); /* display number of D grades */

68 printf("F: %d\n", fCount); /* display number of F grades */

69

70 return 0; /* indicate program ended successfully */

71

72 } /* end function main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23

Program Output

Enter the letter grades.
Enter the EOF character to end input.
a
b
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

4.8 The do…while Repetition Statement

• The do…while repetition statement

– Similar to the while structure

– Condition for repetition tested after the body of the loop is

performed

• All actions are performed at least once

– Format:

do {

statement;

} while (condition);

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

4.8 The do…while Repetition Statement

• Example (letting counter = 1):
do {

printf("%d ", counter);

} while (++counter <= 10);

– Prints the integers from 1 to 10

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

4.8 The do…while Repetition Statement

• Flowchart of the do…while repetition statement

true

false

action(s)

condition

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27
1 /* Fig. 4.9: fig04_09.c

2 Using the do/while repetition statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter = 1; /* initialize counter */

9

10 do {

11 printf("%d ", counter); /* display counter */

12 } while (++counter <= 10); /* end do...while */

13

14 return 0; /* indicate program ended successfully */

15

16 } /* end function main */

fig04_09.c

Program Output

1 2 3 4 5 6 7 8 9 10

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

4.9 The break and continue Statements

• break

– Causes immediate exit from a while, for, do…while or

switch statement

– Program execution continues with the first statement after

the structure

– Common uses of the break statement

• Escape early from a loop

• Skip the remainder of a switch statement

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

29
1 /* Fig. 4.11: fig04_11.c

2 Using the break statement in a for statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int x; /* counter */

9

10 /* loop 10 times */

11 for (x = 1; x <= 10; x++) {

12

13 /* if x is 5, terminate loop */

14 if (x == 5) {

15 break; /* break loop only if x is 5 */

16 } /* end if */

17

18 printf("%d ", x); /* display value of x */

19 } /* end for */

20

21 printf("\nBroke out of loop at x == %d\n", x);

22

23 return 0; /* indicate program ended successfully */

24

25 } /* end function main */

fig04_11.c

Program Output1 2 3 4
Broke out of loop at x == 5

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

30

4.9 The break and continue Statements

• continue

– Skips the remaining statements in the body of a while, for

or do…while statement

• Proceeds with the next iteration of the loop

– while and do…while

• Loop-continuation test is evaluated immediately after the

continue statement is executed

– for

• Increment expression is executed, then the loop-continuation

test is evaluated

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

31
1 /* Fig. 4.12: fig04_12.c

2 Using the continue statement in a for statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int x; /* counter */

9

10 /* loop 10 times */

11 for (x = 1; x <= 10; x++) {

12

13 /* if x is 5, continue with next iteration of loop */

14 if (x == 5) {

15 continue; /* skip remaining code in loop body */

16 } /* end if */

17

18 printf("%d ", x); /* display value of x */

19 } /* end for */

20

21 printf("\nUsed continue to skip printing the value 5\n");

22

23 return 0; /* indicate program ended successfully */

24

25 } /* end function main */

fig04_12.c

Program Output
1 2 3 4 6 7 8 9 10
Used continue to skip printing the value 5

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

32

4.10 Logical Operators

• && (logical AND)

– Returns true if both conditions are true

• || (logical OR)

– Returns true if either of its conditions are true

• ! (logical NOT, logical negation)

– Reverses the truth/falsity of its condition

– Unary operator, has one operand

• Useful as conditions in loops
Expression Result

true && false false
true || false true

!false true

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

33

4.10 Logical Operators

expression1 expression2 expression1 && expression2

0 0 0

0 nonzero 0

nonzero 0 0

nonzero nonzero 1

Fig. 4.13 Truth table for the && (logical AND) operator.

expression1 expression2 expression1 || expression2

0 0 0

0 nonzero 1

nonzero 0 1

nonzero nonzero 1

Fig. 4.14 Truth table for the logical OR (||) operator.

expression ! expression

0 1

nonzero 0

Fig. 4.15 Truth table for operator ! (logical negation).

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

34

4.10 Logical Operators

Operators Associativity Type

++ -- + - ! (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Fig. 4.16 Operator precedence and associativity.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

35

4.11 Confusing Equality (==) and

Assignment (=) Operators

• Dangerous error

– Does not ordinarily cause syntax errors

– Any expression that produces a value can be used in control

structures

– Nonzero values are true, zero values are false

– Example using ==:

if (payCode == 4)

printf("You get a bonus!\n");

• Checks payCode, if it is 4 then a bonus is awarded

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

36

4.11 Confusing Equality (==) and

Assignment (=) Operators
– Example, replacing == with =:

if (payCode = 4)

printf("You get a bonus!\n");

• This sets payCode to 4

• 4 is nonzero, so expression is true, and bonus awarded no

matter what the payCode was

– Logic error, not a syntax error

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

37

4.11 Confusing Equality (==) and

Assignment (=) Operators

• lvalues

– Expressions that can appear on the left side of an equation

– Their values can be changed, such as variable names

• x = 4;

• rvalues

– Expressions that can only appear on the right side of an

equation

– Constants, such as numbers

• Cannot write 4 = x;

• Must write x = 4;

– lvalues can be used as rvalues, but not vice versa

• y = x;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

38

4.12 Structured-Programming Summary

T

F

if statement

(single selection)

TF

if…else statement

(double selection)

T

F

switch statement

(multiple selection)

break

T

F

break

T

F

break

.

.

.

Selection

Seq uence

...

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

39

4.12 Structured-Programming Summary

Repetition

T

F

do…while statement

T

F

while statement

T

F

for statement

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

40

4.12 Structured-Programming Summary

• Structured programming

– Easier than unstructured programs to understand, test,

debug and, modify programs

• Rules for structured programming

– Rules developed by programming community

– Only single-entry/single-exit control structures are used

– Rules:

1. Begin with the “simplest flowchart”

2. Stacking rule: Any rectangle (action) can be replaced by two

rectangles (actions) in sequence

3. Nesting rule: Any rectangle (action) can be replaced by any

control structure (sequence, if, if…else, switch, while,

do…while or for)

4. Rules 2 and 3 can be applied in any order and multiple times

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

41

4.12 Structured-Programming Summary

.

.

.

Rule 2 Rule 2 Rule 2

Rule 1 - Begin with the

simplest flowchart

Rule 2 - Any rectangle can be

replaced by two rectangles in

sequence

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

42

4.12 Structured-Programming Summary

Rule 3

Rule 3
Rule 3

Rule 3 - Replace any rectangle with a control structure

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

43

4.12 Structured-Programming Summary

Stacke d b uilding b lo cks Nested build ing blocks

Overla pping b uilding blocks

(Illega l in struc tured pro gra ms)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

44

4.12 Structured-Programming Summary

Figure 4.23 An unstructured flowchart.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

45

4.12 Structured-Programming Summary

• All programs can be broken down into 3 controls

– Sequence – handled automatically by compiler

– Selection – if, if…else or switch

– Repetition – while, do…while or for

• Can only be combined in two ways

– Nesting (rule 3)

– Stacking (rule 2)

– Any selection can be rewritten as an if statement, and any

repetition can be rewritten as a while statement

