Chapter 4 — C Program Control

Outline

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Introduction

The Essentials of Repetition
Counter-Controlled Repetition

The for Repetition Statement

The for Statement: Notes and Observations
Examples Using the for Statement

The switch Multiple-Selection Statement
The do...while Repetition Statement

The break and continue Statements

Logical Operators

Confusing Equality (==) and Assignment (=) Operators
Structured Programming Summary

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

* In this chapter, you will learn:

To be able to use the for and do...wh1i 1e repetition statements.

To understand multiple selection using the switch selection
statement.

To be able to use the break and continue program control
statements

To be able to use the logical operators.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.1 Introduction

 This chapter introduces

— Additional repetition control structures
« for

e Do...while
— switch multiple selection statement

— break statement

 Used for exiting immediately and rapidly from certain control
structures

— continue statement

 Used for skipping the remainder of the body of a repetition
structure and proceeding with the next iteration of the loop

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.2 The Essentials of Repetition
* Loop

— Group of instructions computer executes repeatedly while
some condition remains true
« Counter-controlled repetition
— Definite repetition: know how many times loop will execute
— Control variable used to count repetitions

 Sentinel-controlled repetition
— Indefinite repetition
— Used when number of repetitions not known
— Sentinel value indicates "end of data"

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.3 Essentials of Counter-Controlled
Repetition
» Counter-controlled repetition requires

— The name of a control variable (or loop counter)

— The initial value of the control variable

— An increment (or decrement) by which the control variable is
modified each time through the loop

— A condition that tests for the final value of the control variable (i.e.,
whether looping should continue)

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.3 Essentials of Counter-Controlled
Repetition
« Example:

int counter = 1; // 1nitialization

while (counter <= 10) { // repetition condition
printf("%d\n", counter);
++counter; // increment

}

— The statement
int counter = 1;

Names counter

Defines it to be an integer
Reserves space for it in memory
Sets it to an initial value of 1

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 /* Fig. 4.1: fig04_01.c

2 Counter-controlled repetition */ A Outline
3 #include <stdio.h>

. \

5 /* function main begins program execution */ figO4—Ol'C
6 1int main(Q)

7 {

8 int counter = 1; /* initialization */

9

10 while (counter <= 10) { /* repetition condition */

11 printf ("%d\n", counter); /* display counter */

12 ++counter; /* increment */

13 } /* end while */

14

15 return 0; /* indicate program ended successfully */

16

17 } /* end function main */ Program Output
1

2

3

4

5

6

7

8

9

10

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.3 Essentials of Counter-Controlled
Repetition
e Condensed code

— C Programmers would make the program more concise

— Initialize counterto O

e while (++counter <= 10)
printf(“%d\n, counter);

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

© 00 N o o B~ W N -

10
11
12
13
14
15
16
17
18

/* Fig. 4.2: fig04_02.c
Counter-controlled repetition with the for statement */
#include <stdio.h>

/* function main begins program execution */
int mainQ)
{

int counter; /* define counter */

/* initialization, repetition condition, and increment
are all included in the for statement header. */

for (counter = 1; counter <= 10; counter++) {
printf("%d\n", counter);

} /* end for */

return 0; /* indicate program ended successfully */

} /* end function main */

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Qutline
WV
figo4 02.c

4.4 The for Repetition Statement

for keyword Confrol varable names Final value of confrol varable
\ / /fDrwhich the condition s frue
» -
for (counter = 1; counter <= * ++counter)
Initial valug of control variable A Increment of confrol variable

Loop-continudtion condition

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

10

4.4 The for Repetition Statement

» Format when using for loops

for (initialization; loopContinuationTest; increment)
statement

« Example:

for(int counter = 1; counter <= 10; counter++)
printf("%d\n", counter); ////]

— Prints the integers from one to ten No
semicolon

(;) after last
expression

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.4 The for Repetition Statement

 For loops can usually be rewritten as while loops:
initialization;
while (loopContinuationTest) {
Statement;

Increment;
}

« [nitialization and increment
— Can be comma-separated lists

— Example:
for (int i =0, J =0; Jj + i<=10; j++, i++)
printf("%d\n", j + i);

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

4.5 The for Statement : Notes and
Observations

 Arithmetic expressions

— Initialization, loop-continuation, and increment can contain
arithmetic expressions. If x equals 2 and y equals 10
for (J=x; J<=4*x*y; J+=y/ Xx)
IS equivalent to
for (j =2; J <=80; J +=5)
 Notes about the for statement:
— "Increment" may be negative (decrement)

— If the loop continuation condition is initially false
» The body of the for statement is not performed

 Control proceeds with the next statement after the for statement

— Control variable

 Often printed or used inside for body, but not necessary
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

4.5 The for Statement : Notes and
Observations

Establishinitial O
value of control
variable J

counter = 1

P

v

o printf("%d", counter); || counter++

counter <= 10

Increment
Det e if final the control
etermine It fina ~ Body of loop - variable

value of control (this may be many
variable has been © statements)

reached

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 /* Fig. 4.5: fig04_05.c

2 summation with for */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 1int main(Q)

7 {

8 int sum = 0; /* initialize sum */

9 int number; /* number to be added to sum */

10

11 for (number = 2; number <= 100; number += 2) {
12 sum += number; /* add number to sum */

13 } /* end for */

14

15 printf("sum is %d\n", sum); /* output sum */
16

17 return 0; /* indicate program ended successfully */
18

19 } /* end function main */

Sum is 2550

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Qutline
W
fig04_05.c

Program Output

15

24
25
26

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

/* Fig. 4.6: fig04_06.c

Calculating compound interest */
#include <stdio.h>
#include <math.h>

/* function main begins program execution */

int main()

{
double amount; /* amount on deposit */
double principal = 1000.0; /* starting principal */
double rate = .05; /* interest rate */

int year; /* year counter */

/* output table column head */
printf("%4s%21s\n", "Year", "Amount on deposit");

/* calculate amount on deposit for each of ten years */
for (year = 1; year <= 10; year++) {

/* calculate new amount for specified year */
amount = principal * pow(1.0 + rate, year);

/* output one table row */
printf("%4d%21.2f\n", year, amount);
} /* end for */

A
v

fig04_06.c (Part 1 of
2)

Qutline

16

27 return 0; /* indicate program ended successfully */

28

29 } /* end function main */

Year Amount on deposit

1477

owWwooNOOUVTIHA WN R

=

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1050.
1102.
1157.
1215.
1276.
1340.
1407 .
.46
1551.
1628.

00
50
63
51
28
10
10

33
89

I‘k 17

Qutline
4

fig04_06.c (Part 2
of 2)

Program Output

18

4.7 The switch Multiple-Selection
Statement
e switch

— Useful when a variable or expression is tested for all the
values It can assume and different actions are taken

e Format

— Series of case labels and an optional defau'lt case
switch (value){

case '1l':
actions

case '2':
actions

default:
actions

}

- break; exits from statement
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.7 The switch Multiple-Selection
Statement

 Flowchart of the sw1itch statement
O

case a action(s) F_____ﬂ break

T

case b action(s) F_____ﬂ break

T

l false

true
<i:ii:::;;g£:;:::::::>ﬂ case z action(s) — break

false

‘ default action(s) ‘

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

© 00 N OO 0o A W N P

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

/* Fig. 4.7: fig04_07.c
Counting letter grades */
#include <stdio.h>

/* function main begins program execution */
int main(Q)
{
int grade; /* one grade */
int aCount = 0; /* number of As */
int bCount 0; /* number of Bs */
0; /* number of Cs */
0; /* number of Ds */
0; /* number of Fs */

int cCount
int dCount
int fCount

printf("Enter the letter grades.\n");
printf("Enter the EOF character to end input.\n");

/* Toop until user types end-of-file key sequence */
while ((grade = getchar()) '= eoF) {

/* determine which grade was input */
switch (grade) { /* switch nested in while */

case 'A': /* grade was uppercase A */
case 'a': /* or lowercase a */

++aCount; /* increment aCount */

break; /* necessary to exit switch */

A 20

Qutline
4

fig04_07.c (Part 1 of
3)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

case 'B':

case 'b':
++bCount;
break;

case 'C':

case 'c':
++cCount;

break;

case 'D':

case 'd':
++dCount;
break;

case 'F':

case 'f':
++fCount;
break;

case '\n':
case '\t':
|

case
break;

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

grade was uppercase
or lowercase b */
increment bCount */
exit switch */

grade was uppercase
or lowercase c */
increment cCount */
exit switch */

grade was uppercase
or lowercase d */
increment dCount */
exit switch */

grade was uppercase
or lowercase f */
increment fCount */
exit switch */

ignore newlines, */
tabs, */

and spaces 1in input
exit switch */

*/

A

\'%

Qutline

21

fig04_07.c (Part 2 of

3)

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

default: /* catch all other characters */

printf("Incorrect letter grade entered.");

printf(" Enter a new grade.\n");

break; /* optional; will exit switch anyway */

} /* end switch */
} /* end while */

/% output summary of results */

printf("\nTotals for each letter grade
printf("A: %d\n", aCount); /* display
printf("B: %d\n", bCount); /* display
printf("c: %d\n", cCount); /* display
printf("D: %d\n", dCount); /* display
printf("F: %d\n", fCount); /* display

are:\n");

number of A grades
number of B grades
number of C grades
number of D grades
number of F grades

return 0; /* indicate program ended successfully */

72 } /* end function main */

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

*/
*/
*/
*/
*/

A 22

Qutline
4

fig04_07.c (Part 3 of
3)

Enter the letter grades.
Enter the EOF character to end input.

ncorrect letter grade entered. Enter a new grade.

>OT>U0OHMNO-HhQ>NNT Y

4

Totals for each letter grade are:

MmMmoOonNw>
R NWNW

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A
v

Program Output

Qutline

23

4.8 The do...while Repetition Statement

* The do...wh1 1e repetition statement

— Similar to the wh1i 1e structure

— Condition for repetition tested after the body of the loop is
performed
« All actions are performed at least once
— Format:
do {
statement;;
} while (condition);

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

4.8 The do...while Repetition Statement

« Example (letting counter = 1):
do {
printf("%d ", counter);
} while (++counter <= 10);

— Prints the integers from 1 to 10

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

4.8 The do...while Repetition Statement

* Flowchart of the do...wh1i 1e repetition statement
O

action(s)

true

condition

false

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

1 /* Fig. 4.9: fig04_09.c

2 Using the do/while repetition statement */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 1int main(Q)

7 {

8 int counter = 1; /* initialize counter */

9

10 do {

11 printf("%d ", counter); /* display counter */
12 } while (++counter <= 10); /* end do...while */
13

14 return 0; /* indicate program ended successfully */
15

16 } /* end function main */

1 2 3 4 5 6 7 8 9 10

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Qutline
W
fig04_09.c

Program Output

27

4.9 The break and continue Statements

e break

— Causes immediate exit from awhile, for, do...whileor
switch statement

— Program execution continues with the first statement after
the structure

— Common uses of the break statement
 Escape early from a loop
« SKip the remainder of a switch statement

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

1 /* Fig. 4.11: fig04_11.c

2 Using the break statement in a for statement */ A Outline
3 #include <stdio.h>

: -

5 /* function main begins program execution */ f|g()4;_11"c
6 1int main(Q)

7 {

8 int x; /* counter */

9

10 /* Toop 10 times */

11 for (x =1; x <= 10; x++) {

12

13 /* if x is 5, terminate loop */

14 if (x=5){

15 break; /* break loop only if x is 5 */

16 } /* end if */

17

18 printf("%d ", x); /* display value of x */

19 } /* end for */

20

21 printf("\nBroke out of loop at x == %d\n", x);

22

23 return 0; /* indicate program ended successfully */

24

25 } /* end function main */

1234 Program Output

Broke out of Toop at x ==

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

30

4.9 The break and continue Statements

e continue
— Skips the remaining statements in the body of awh1ile, for
or do...wh11e statement
 Proceeds with the next iteration of the loop

— whileand do...while

 Loop-continuation test is evaluated immediately after the
continue statement is executed

- for

* Increment expression is executed, then the loop-continuation
test is evaluated

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 /* Fig. 4.12: fig04_12.c

2 Using the continue statement in a for statement */ A Outline
3 #include <stdio.h> v
4

5 /* function main begins program execution */ figO4—12'C
6 1int main(Q)

7 {

8 int x; /* counter */

<

10 /* loop 10 times */

11 for (x =1; X <= 10; x++) {

12

13 /* if x is 5, continue with next iteration of loop */

14 if (x==5){

15 continue; /* skip remaining code in loop body */

16 } /* end if */

17

18 printf("%d ", x); /* display value of x */

19 } /* end for */

20

21 printf("\nUsed continue to skip printing the value 5\n");

22

23 return 0; /* indicate program ended successfully */

24

25 } /* end function main */

1234678910
Used continue to skip printing the value 5

Program Output

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.10 Logical Operators
e && (logical AND)

— Returns true if both conditions are true
e || (logical OR)

— Returns true if either of its conditions are true
« | (logical NOT, logical negation)

— Reverses the truth/falsity of its condition

— Unary operator, has one operand

« Useful as conditions in loops

Expression Result
true && false false
true || false true
Ifalse true

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

32

4.10

_ogica

Operators

expressionl

expression2

expressionl && expression2

0

0

0

0 nonzero 0
nonzero 0 0
nonzero nonzero 1

Fig. 4.13 Truth table for the && (logical AND) operator.

expressionl

expression2

expressionl | | expression2

0

0

0

0 nonzero 1
nonzero 0 1
nonzero nonzero 1

Fig. 4.14 Truth table for the logical OR (||) operator.

expression I expression
0 1
nonzero 0

Fig. 4.15 Truth table for operator ! (logical negation).

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

33

4.10 Logical Operators

Operators Associativity Type
++ -- + - ! (type) right to left unary

/ % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== I= left to right equality
&& left to right logical AND
| left to right logical OR
7 right to left conditional
= += -= *= /= %= right to left assignment
’ left to right comma
Fig. 4.16 Operator precedence and associativity.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.11 Confusing Equality (==) and
Assignment (=) Operators

« Dangerous error

Does not ordinarily cause syntax errors

Any expression that produces a value can be used in control
structures

Nonzero values are true, zero values are false
Example using ==:
if (payCode == 4)
printf("You get a bonus!\n");
« Checks paycCode, if itis 4 then a bonus is awarded

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

35

4.11 Confusing Equality (==) and

Assignment (=) Operators
— Example, replacing == with =:
if (payCode = 4)
printf("You get a bonus!\n");
« This sets payCode to 4

4 1S nonzero, so expression is true, and bonus awarded no
matter what the payCode was

— Logic error, not a syntax error

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

36

4.11 Confusing Equality (==) and
Assignment (=) Operators

e |values

— EXxpressions that can appear on the left side of an equation
— Their values can be changed, such as variable names
e X = 4;

* rvalues
— Expressions that can only appear on the right side of an
equation
— Constants, such as numbers
« Cannot write 4 =
e Mustwrite x = 4;

— Ivalues can be used as rvalues, but not vice versa
° y = X;

X5

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

37

4.12 Structured-Programming Summary

Selection

Q© 1f statement if...else statement
(single selection)

(double selection)
T F T
-]

I = =
swi tch statement T

Squence

AT

(multiple selection) é
-~ T] 4—-p] break 4—p~
|F
<?L
~ .| —-»{break }——e-
F

v

SO MNP

o e
v
i4

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pea&on Education Inc. All Rights Reserved.

38

39

4.12 Structured-Programming Summary

Repetition

wh1ile statement do..wh1i1e statement for statement

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.12 Structured-Programming Summary

« Structured programming

— Easier than unstructured programs to understand, test,
debug and, modify programs

* Rules for structured programming
— Rules developed by programming community
— Only single-entry/single-exit control structures are used
— Rules:

1. Begin with the “simplest flowchart”

2. Stacking rule: Any rectangle (action) can be replaced by two
rectangles (actions) in sequence

3. Nesting rule: Any rectangle (action) can be replaced by any

control structure (sequence, if, if...else, switch, while,

do...whiTe or for)

Rules 2 and 3 can be aPSplled in any order and multiple times
© Copyright 1992 2004 by Deitel & Associates, Inc. and Pearson Education Inc I Rights Reserved.

40

4.12 Structured-Programming Summary

Rule 1 - Begin with the

simplest flowchart
{ J { J
Rule 2 Rule 2

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. [

Rule 2 - Any rectangle can be
replaced by two rectangles in
sequence

[

41

4.12 Structured-Programming Summary

Rule 3 - Replace any rectangle with a control structure

)
I Rule 3
[Rees , S
] |
l—<>—l
:]
Rule3 S

.................... —— Rule 3

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

42

4.12 Structured-Programming Summary

Sacked buiding blocks Nested building blocks

Overdapping buiding blocks
(llegalin structured programs)

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

43

44

4.12 Structured-Programming Summary

Figure 4.23 An unstructured flowchart.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4.12 Structured-Programming Summary

 All programs can be broken down into 3 controls
— Sequence — handled automatically by compiler
— Selection—1if,if...elseor switch

— Repetition —while, do...while or for
« Can only be combined in two ways

— Nesting (rule 3)
— Stacking (rule 2)

— Any selection can be rewritten as an 1 f statement, and any
repetition can be rewritten as a wh1i1e statement

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

45

