
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

Chapter 8 - Characters and Strings

Outline

8.1 Introduction

8.2 Fundamentals of Strings and Characters

8.3 Character Handling Library

8.4 String Conversion Functions

8.5 Standard Input/Output Library Functions

8.6 String Manipulation Functions of the String Handling

Library

8.7 Comparison Functions of the String Handling Library

8.8 Search Functions of the String Handling Library

8.9 Memory Functions of the String Handling Library

8.10 Other Functions of the String Handling Library

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Objectives

• In this chapter, you will learn:

– To be able to use the functions of the character handling

library (ctype).

– To be able to use the string and character input/output

functions of the standard input/output library (stdio).

– To be able to use the string conversion functions of the

general utilities library (stdlib).

– To be able to use the string processing functions of the

string handling library (string).

– To appreciate the power of function libraries as a means

of achieving software reusability.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

8.1 Introduction

• Introduce some standard library functions

– Easy string and character processing

– Programs can process characters, strings, lines of text, and

blocks of memory

• These techniques used to make

– Word processors

– Page layout software

– Typesetting programs

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

8.2 Fundamentals of Strings and

Characters

• Characters
– Building blocks of programs

• Every program is a sequence of meaningfully grouped
characters

– Character constant

• An int value represented as a character in single quotes

• 'z' represents the integer value of z

• Strings
– Series of characters treated as a single unit

• Can include letters, digits and special characters (*, /, $)

– String literal (string constant) - written in double quotes
• "Hello"

– Strings are arrays of characters

• String a pointer to first character

• Value of string is the address of first character

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

8.2 Fundamentals of Strings and

Characters

• String definitions

– Define as a character array or a variable of type char *

char color[] = "blue";

char *colorPtr = "blue";

– Remember that strings represented as character arrays end

with '\0'

• color has 5 elements

• Inputting strings

– Use scanf

scanf("%s", word);

• Copies input into word[]

• Do not need & (because a string is a pointer)

– Remember to leave room in the array for '\0'

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

8.3 Character Handling Library

• Character handling library

– Includes functions to perform useful tests and manipulations

of character data

– Each function receives a character (an int) or EOF as an

argument

• The following slide contains a table of all the

functions in <ctype.h>

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

8.3 Character Handling Library

Prototype Description

int isdigit(int c);
Returns true if c is a digit and false otherwise.

int isalpha(int c);
Returns true if c is a letter and false otherwise.

int isalnum(int c);
Returns true if c is a digit or a letter and false otherwise.

int isxdigit(int c);
Returns true if c is a hexadecimal digit character and false otherwise.

int islower(int c);
Returns true if c is a lowercase letter and false otherwise.

int isupper(int c);
Returns true if c is an uppercase letter; false otherwise.

int tolower(int c);
If c is an uppercase letter, tolower returns c as a lowercase letter. Otherwise, tolower

returns the argument unchanged.
int toupper(int c);

If c is a lowercase letter, toupper returns c as an uppercase letter. Otherwise, toupper

returns the argument unchanged.
int isspace(int c);

Returns true if c is a white-space character—newline ('\n'), space (' '), form feed

('\f'), carriage return ('\r'), horizontal tab ('\t'), or vertical tab ('\v')—and false

otherwise
int iscntrl(int c);

Returns true if c is a control character and false otherwise.
int ispunct(int c);

Returns true if c is a printing character other than a space, a digit, or a letter and false

otherwise.
int isprint(int c);

Returns true value if c is a printing character including space (' ') and false otherwise.

int isgraph(int c);
Returns true if c is a printing character other than space (' ') and false otherwise.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

fig08_02.c (Part 1 of

2)

1 /* Fig. 8.2: fig08_02.c

2 Using functions isdigit, isalpha, isalnum, and isxdigit */

3 #include <stdio.h>

4 #include <ctype.h>

5

6 int main()

7 {

8 printf("%s\n%s%s\n%s%s\n\n", "According to isdigit: ",

9 isdigit('8') ? "8 is a " : "8 is not a ", "digit",

10 isdigit('#') ? "# is a " : "# is not a ", "digit");

11

12 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

13 "According to isalpha:",

14 isalpha('A') ? "A is a " : "A is not a ", "letter",

15 isalpha('b') ? "b is a " : "b is not a ", "letter",

16 isalpha('&') ? "& is a " : "& is not a ", "letter",

17 isalpha('4') ? "4 is a " : "4 is not a ", "letter");

18

19 printf("%s\n%s%s\n%s%s\n%s%s\n\n",

20 "According to isalnum:",

21 isalnum('A') ? "A is a " : "A is not a ",

22 "digit or a letter",

23 isalnum('8') ? "8 is a " : "8 is not a ",

24 "digit or a letter",

25 isalnum('#') ? "# is a " : "# is not a ",

26 "digit or a letter");

27

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

9

fig08_02.c (Part 2 of

2)

28 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n",

29 "According to isxdigit:",

30 isxdigit('F') ? "F is a " : "F is not a ",

31 "hexadecimal digit",

32 isxdigit('J') ? "J is a " : "J is not a ",

33 "hexadecimal digit",

34 isxdigit('7') ? "7 is a " : "7 is not a ",

35 "hexadecimal digit",

36 isxdigit('$') ? "$ is a " : "$ is not a ",

37 "hexadecimal digit",

38 isxdigit('f') ? "f is a " : "f is not a ",

39 "hexadecimal digit");

40

41 return 0; /* indicates successful termination */

42

43 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

10

Program Output

According to isdigit:
8 is a digit
is not a digit

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11

fig08_03.c (Part 1 of

2)

1 /* Fig. 8.3: fig08_03.c

2 Using functions islower, isupper, tolower, toupper */

3 #include <stdio.h>

4 #include <ctype.h>

5

6 int main()

7 {

8 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

9 "According to islower:",

10 islower('p') ? "p is a " : "p is not a ",

11 "lowercase letter",

12 islower('P') ? "P is a " : "P is not a ",

13 "lowercase letter",

14 islower('5') ? "5 is a " : "5 is not a ",

15 "lowercase letter",

16 islower('!') ? "! is a " : "! is not a ",

17 "lowercase letter");

18

19 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

20 "According to isupper:",

21 isupper('D') ? "D is an " : "D is not an ",

22 "uppercase letter",

23 isupper('d') ? "d is an " : "d is not an ",

24 "uppercase letter",

25 isupper('8') ? "8 is an " : "8 is not an ",

26 "uppercase letter",

27 isupper('$') ? "$ is an " : "$ is not an ",

28 "uppercase letter");

29

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

fig08_03.c (Part 2 of

2)

Program Output
According to islower:

p is a lowercase letter

P is not a lowercase letter

5 is not a lowercase letter

! is not a lowercase letter

According to isupper:

D is an uppercase letter

d is not an uppercase letter

8 is not an uppercase letter

$ is not an uppercase letter

u converted to uppercase is U

7 converted to uppercase is 7

$ converted to uppercase is $

L converted to lowercase is l

30 printf("%s%c\n%s%c\n%s%c\n%s%c\n",

31 "u converted to uppercase is ", toupper('u'),

32 "7 converted to uppercase is ", toupper('7'),

33 "$ converted to uppercase is ", toupper('$'),

34 "L converted to lowercase is ", tolower('L'));

35

36 return 0; /* indicates successful termination */

37

38 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

fig08_04.c (Part 1 of

2)

1 /* Fig. 8.4: fig08_04.c

2 Using functions isspace, iscntrl, ispunct, isprint, isgraph */

3 #include <stdio.h>

4 #include <ctype.h>

5

6 int main()

7 {

8 printf("%s\n%s%s%s\n%s%s%s\n%s%s\n\n",

9 "According to isspace:",

10 "Newline", isspace('\n') ? " is a " : " is not a ",

11 "whitespace character", "Horizontal tab",

12 isspace('\t') ? " is a " : " is not a ",

13 "whitespace character",

14 isspace('%') ? "% is a " : "% is not a ",

15 "whitespace character");

16

17 printf("%s\n%s%s%s\n%s%s\n\n", "According to iscntrl:",

18 "Newline", iscntrl('\n') ? " is a " : " is not a ",

19 "control character", iscntrl('$') ? "$ is a " :

20 "$ is not a ", "control character");

21

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14

fig08_04.c (Part 2 of

2)

22 printf("%s\n%s%s\n%s%s\n%s%s\n\n",

23 "According to ispunct:",

24 ispunct(';') ? "; is a " : "; is not a ",

25 "punctuation character",

26 ispunct('Y') ? "Y is a " : "Y is not a ",

27 "punctuation character",

28 ispunct('#') ? "# is a " : "# is not a ",

29 "punctuation character");

30

31 printf("%s\n%s%s\n%s%s%s\n\n", "According to isprint:",

32 isprint('$') ? "$ is a " : "$ is not a ",

33 "printing character",

34 "Alert", isprint('\a') ? " is a " : " is not a ",

35 "printing character");

36

37 printf("%s\n%s%s\n%s%s%s\n", "According to isgraph:",

38 isgraph('Q') ? "Q is a " : "Q is not a ",

39 "printing character other than a space",

40 "Space", isgraph(' ') ? " is a " : " is not a ",

41 "printing character other than a space");

42

43 return 0; /* indicates successful termination */

44

45 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15

Program Output

According to isspace:

Newline is a whitespace character

Horizontal tab is a whitespace character

% is not a whitespace character

According to iscntrl:

Newline is a control character

$ is not a control character

According to ispunct:

; is a punctuation character

Y is not a punctuation character

is a punctuation character

According to isprint:

$ is a printing character

Alert is not a printing character

According to isgraph:

Q is a printing character other than a space

Space is not a printing character other than a space

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

16

8.4 String Conversion Functions

• Conversion functions

– In <stdlib.h> (general utilities library)

• Convert strings of digits to integer and floating-

point values

Function prototype Function description
double atof(const char *nPtr); Converts the string nPtr to double.

int atoi(const char *nPtr); Converts the string nPtr to int.

long atol(const char *nPtr); Converts the string nPtr to long int.

double strtod(const char *nPtr, char
**endPtr);

Converts the string nPtr to double.

long strtol(const char *nPtr, char
**endPtr, int base);

Converts the string nPtr to long.

unsigned long strtoul(const char
*nPtr, char **endPtr, int base);

Converts the string nPtr to unsigned long.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

171 /* Fig. 8.6: fig08_06.c

2 Using atof */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main()

7 {

8 double d; /* variable to hold converted string */

9

10 d = atof("99.0");

11

12 printf("%s%.3f\n%s%.3f\n",

13 "The string \"99.0\" converted to double is ", d,

14 "The converted value divided by 2 is ",

15 d / 2.0);

16

17 return 0; /* indicates successful termination */

18

19 } /* end main */

fig 08_06.c

Program OutputThe string "99.0" converted to double is 99.000
The converted value divided by 2 is 49.500

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

181 /* Fig. 8.7: fig08_07.c

2 Using atoi */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main()

7 {

8 int i; /* variable to hold converted string */

9

10 i = atoi("2593");

11

12 printf("%s%d\n%s%d\n",

13 "The string \"2593\" converted to int is ", i,

14 "The converted value minus 593 is ", i - 593);

15

16 return 0; /* indicates successful termination */

17

18 } /* end main */

fig08_07.c

Program OutputThe string "2593" converted to int is 2593
The converted value minus 593 is 2000

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

191 /* Fig. 8.8: fig08_08.c

2 Using atol */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main()

7 {

8 long l; /* variable to hold converted string */

9

10 l = atol("1000000");

11

12 printf("%s%ld\n%s%ld\n",

13 "The string \"1000000\" converted to long int is ", l,

14 "The converted value divided by 2 is ", l / 2);

15

16 return 0; /* indicates successful termination */

17

18 } /* end main */

fig08_08.c

Program OutputThe string "1000000" converted to long int is 1000000
The converted value divided by 2 is 500000

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

201 /* Fig. 8.9: fig08_09.c

2 Using strtod */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main()

7 {

8 /* initialize string pointer */

9 const char *string = "51.2% are admitted";

10

11 double d; /* variable to hold converted sequence */

12 char *stringPtr; /* create char pointer */

13

14 d = strtod(string, &stringPtr);

15

16 printf("The string \"%s\" is converted to the\n", string);

17 printf("double value %.2f and the string \"%s\"\n", d, stringPtr);

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

fig08_09.c

Program Output
The string "51.2% are admitted" is converted to the
double value 51.20 and the string "% are admitted"

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21
1 /* Fig. 8.10: fig08_10.c

2 Using strtol */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main()

7 {

8 const char *string = "-1234567abc"; /* initialize string pointer */

9

10 char *remainderPtr; /* create char pointer */

11 long x; /* variable to hold converted sequence */

12

13 x = strtol(string, &remainderPtr, 0);

14

15 printf("%s\"%s\"\n%s%ld\n%s\"%s\"\n%s%ld\n",

16 "The original string is ", string,

17 "The converted value is ", x,

18 "The remainder of the original string is ",

19 remainderPtr,

20 "The converted value plus 567 is ", x + 567);

21

22 return 0; /* indicates successful termination */

23

24 } /* end main */

fig08_10.c

Program OutputThe original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22
1 /* Fig. 8.11: fig08_11.c

2 Using strtoul */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main()

7 {

8 const char *string = "1234567abc"; /* initialize string pointer */

9 unsigned long x; /* variable to hold converted sequence */

10 char *remainderPtr; /* create char pointer */

11

12 x = strtoul(string, &remainderPtr, 0);

13

14 printf("%s\"%s\"\n%s%lu\n%s\"%s\"\n%s%lu\n",

15 "The original string is ", string,

16 "The converted value is ", x,

17 "The remainder of the original string is ",

18 remainderPtr,

19 "The converted value minus 567 is ", x - 567);

20

21 return 0; /* indicates successful termination */

22

23 } /* end main */

fig08_11.c

Program Output
The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23

8.5 Standard Input/Output Library

Functions

• Functions in <stdio.h>

• Used to manipulate character and string data

Function prototype Function description
int getchar(void); Inputs the next character from the standard input and re-

turns it as an integer.

char *gets(char *s); Inputs characters from the standard input into the array s

until a newline or end-of-file character is encountered. A

terminating null character is appended to the array.
int putchar(int c); Prints the character stored in c.
int puts(const char *s); Prints the string s followed by a newline character.
int sprintf(char *s, const
char *format, ...);

Equivalent to printf, except the output is stored in the

array s instead of printing it on the screen.
int sscanf(char *s, const
char *format, ...);

Equivalent to scanf, except the input is read from the array

s instead of reading it from the keyboard.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

fig08_13.c (Part 1 of

2)

1 /* Fig. 8.13: fig08_13.c

2 Using gets and putchar */

3 #include <stdio.h>

4

5 int main()

6 {

7 char sentence[80]; /* create char array */

8

9 void reverse(const char * const sPtr); /* prototype */

10

11 printf("Enter a line of text:\n");

12

13 /* use gets to read line of text */

14 gets(sentence);

15

16 printf("\nThe line printed backwards is:\n");

17 reverse(sentence);

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

22

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

fig08_13.c (Part 1 of

2)

Program OutputEnter a line of text:

Characters and Strings

The line printed backwards is:

sgnirtS dna sretcarahC

Enter a line of text:

able was I ere I saw elba

The line printed backwards is:

able was I ere I saw elba

23 /* recursively outputs characters in string in reverse order */

24 void reverse(const char * const sPtr)

25 {

26 /* if end of the string */

27 if (sPtr[0] == '\0') {

28 return;

29 } /* end if */

30 else { /* if not end of the string */

31 reverse(&sPtr[1]);

32

33 putchar(sPtr[0]); /* use putchar to display character */

34 } /* end else */

35

36 } /* end function reverse */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

fig8_14.c

1 /* Fig. 8.14: fig08_14.c

2 Using getchar and puts */

3 #include <stdio.h>

4

5 int main()

6 {

7 char c; /* variable to hold character input by user */

8 char sentence[80]; /* create char array */

9 int i = 0; /* initialize counter i */

10

11 /* prompt user to enter line of text */

12 puts("Enter a line of text:");

13

14 /* use getchar to read each character */

15 while ((c = getchar()) != '\n') {

16 sentence[i++] = c;

17 } /* end while */

18

19 sentence[i] = '\0';

20

21 /* use puts to display sentence */

22 puts("\nThe line entered was:");

23 puts(sentence);

24

25 return 0; /* indicates successful termination */

26

27 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27

Program Output

Enter a line of text:

This is a test.

The line entered was:

This is a test.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

fig08_15.c

Program Output
Enter an integer and a double:

298 87.375

The formatted output stored in array s is:

integer: 298

double: 87.38

1 /* Fig. 8.15: fig08_15.c

2 Using sprintf */

3 #include <stdio.h>

4

5 int main()

6 {

7 char s[80]; /* create char array */

8 int x; /* define x */

9 double y; /* define y */

10

11 printf("Enter an integer and a double:\n");

12 scanf("%d%lf", &x, &y);

13

14 sprintf(s, "integer:%6d\ndouble:%8.2f", x, y);

15

16 printf("%s\n%s\n",

17 "The formatted output stored in array s is:", s);

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

291 /* Fig. 8.16: fig08_16.c

2 Using sscanf */

3 #include <stdio.h>

4

5 int main()

6 {

7 char s[] = "31298 87.375"; /* initialize array s */

8 int x; /* define x */

9 double y; /* define y */

10

11 sscanf(s, "%d%lf", &x, &y);

12

13 printf("%s\n%s%6d\n%s%8.3f\n",

14 "The values stored in character array s are:",

15 "integer:", x, "double:", y);

16

17 return 0; /* indicates successful termination */

18

19 } /* end main */

fig08_16.c

Program OutputThe values stored in character array s are:

integer: 31298

double: 87.375

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

30

8.6 String Manipulation Functions of the

String Handling Library

• String handling library has functions to

– Manipulate string data

– Search strings

– Tokenize strings

– Determine string length

Function prototype Function description
char *strcpy(char
*s1, const char *s2)

Copies string s2 into array s1. The value of s1 is returned.

char *strncpy(char
*s1, const char *s2,
size_t n)

Copies at most n characters of string s2 into array s1. The value of s1

is returned.

char *strcat(char
*s1, const char *s2)

Appends string s2 to array s1. The first character of s2 overwrites the

terminating null character of s1. The value of s1 is returned.
char *strncat(char
*s1, const char *s2,
size_t n)

Appends at most n characters of string s2 to array s1. The first

character of s2 overwrites the terminating null character of s1. The

value of s1 is returned.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

311 /* Fig. 8.18: fig08_18.c

2 Using strcpy and strncpy */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 char x[] = "Happy Birthday to You"; /* initialize char array x */

9 char y[25]; /* create char array y */

10 char z[15]; /* create char array z */

11

12 /* copy contents of x into y */

13 printf("%s%s\n%s%s\n",

14 "The string in array x is: ", x,

15 "The string in array y is: ", strcpy(y, x));

16

17 /* copy first 14 characters of x into z. Does not copy null

18 character */

19 strncpy(z, x, 14);

20

21 z[14] = '\0'; /* append '\0' to z's contents */

22 printf("The string in array z is: %s\n", z);

23

24 return 0; /* indicates successful termination */

25

26 } /* end main */

fig08_18.c

Program OutputThe string in array x is: Happy Birthday to You

The string in array y is: Happy Birthday to You

The string in array z is: Happy Birthday

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

32

fig08_19.c

1 /* Fig. 8.19: fig08_19.c

2 Using strcat and strncat */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 char s1[20] = "Happy "; /* initialize char array s1 */

9 char s2[] = "New Year "; /* initialize char array s2 */

10 char s3[40] = ""; /* initialize char array s3 */

11

12 printf("s1 = %s\ns2 = %s\n", s1, s2);

13

14 /* concatenate s2 to s1 */

15 printf("strcat(s1, s2) = %s\n", strcat(s1, s2));

16

17 /* concatenate first 6 characters of s1 to s3. Place '\0'

18 after last character */

19 printf("strncat(s3, s1, 6) = %s\n", strncat(s3, s1, 6));

20

21 /* concatenate s1 to s3 */

22 printf("strcat(s3, s1) = %s\n", strcat(s3, s1));

23

24 return 0; /* indicates successful termination */

25

26 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

33

Program Output

s1 = Happy

s2 = New Year

strcat(s1, s2) = Happy New Year

strncat(s3, s1, 6) = Happy

strcat(s3, s1) = Happy Happy New Year

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

34

8.7 Comparison Functions of the String

Handling Library

• Comparing strings

– Computer compares numeric ASCII codes of characters in

string

– Appendix D has a list of character codes

int strcmp(const char *s1, const char *s2);

– Compares string s1 to s2

– Returns a negative number if s1 < s2, zero if s1 == s2 or

a positive number if s1 > s2

int strncmp(const char *s1, const char *s2,

size_t n);

– Compares up to n characters of string s1 to s2

– Returns values as above

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

35

fig08_21.c

1 /* Fig. 8.21: fig08_21.c

2 Using strcmp and strncmp */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 const char *s1 = "Happy New Year"; /* initialize char pointer */

9 const char *s2 = "Happy New Year"; /* initialize char pointer */

10 const char *s3 = "Happy Holidays"; /* initialize char pointer */

11

12 printf("%s%s\n%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n\n",

13 "s1 = ", s1, "s2 = ", s2, "s3 = ", s3,

14 "strcmp(s1, s2) = ", strcmp(s1, s2),

15 "strcmp(s1, s3) = ", strcmp(s1, s3),

16 "strcmp(s3, s1) = ", strcmp(s3, s1));

17

18 printf("%s%2d\n%s%2d\n%s%2d\n",

19 "strncmp(s1, s3, 6) = ", strncmp(s1, s3, 6),

20 "strncmp(s1, s3, 7) = ", strncmp(s1, s3, 7),

21 "strncmp(s3, s1, 7) = ", strncmp(s3, s1, 7));

22

23 return 0; /* indicates successful termination */

24

25 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

36

Program Output

s1 = Happy New Year

s2 = Happy New Year

s3 = Happy Holidays

strcmp(s1, s2) = 0

strcmp(s1, s3) = 1

strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0

strncmp(s1, s3, 7) = 1

strncmp(s3, s1, 7) = -1

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

37

8.8 Search Functions of the String

Handling Library
Function prototype Function description

char *strchr(const char *s,
int c);

Locates the first occurrence of character c in string s. If c is found, a

pointer to c in s is returned. Otherwise, a NULL pointer is returned.

size_t strcspn(const char
*s1, const char *s2);

Determines and returns the length of the initial segment of string s1

consisting of characters not contained in string s2.

size_t strspn(const char
*s1, const char *s2);

Determines and returns the length of the initial segment of string s1

consisting only of characters contained in string s2.

char *strpbrk(const char
*s1, const char *s2);

Locates the first occurrence in string s1 of any character in string s2.

If a character from string s2 is found, a pointer to the character in

string s1 is returned. Otherwise, a NULL pointer is returned.

char *strrchr(const char *s,
int c);

Locates the last occurrence of c in string s. If c is found, a pointer to c

in string s is returned. Otherwise, a NULL pointer is returned.

char *strstr(const char *s1,
const char *s2);

Locates the first occurrence in string s1 of string s2. If the string is

found, a pointer to the string in s1 is returned. Otherwise, a NULL

pointer is returned.

char *strtok(char *s1, const
char *s2);

A sequence of calls to strtok breaks string s1 into “tokens”—logical

pieces such as words in a line of text—separated by characters

contained in string s2. The first call contains s1 as the first argument,

and subsequent calls to continue tokenizing the same string contain

NULL as the first argument. A pointer to the current token is returned

by each call. If there are no more tokens when the function is called,

NULL is returned.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

38

fig08_23.c (Part 1 of

2)

1 /* Fig. 8.23: fig08_23.c

2 Using strchr */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 const char *string = "This is a test"; /* initialize char pointer */

9 char character1 = 'a'; /* initialize character1 */

10 char character2 = 'z'; /* initialize character2 */

11

12 /* if character1 was found in string */

13 if (strchr(string, character1) != NULL) {

14 printf("\'%c\' was found in \"%s\".\n",

15 character1, string);

16 } /* end if */

17 else { /* if character1 was not found */

18 printf("\'%c\' was not found in \"%s\".\n",

19 character1, string);

20 } /* end else */

21

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

39
22 /* if character2 was found in string */

23 if (strchr(string, character2) != NULL) {

24 printf("\'%c\' was found in \"%s\".\n",

25 character2, string);

26 } /* end if */

27 else { /* if character2 was not found */

28 printf("\'%c\' was not found in \"%s\".\n",

29 character2, string);

30 } /* end else */

31

32 return 0; /* indicates successful termination */

33

34 } /* end main */

fig08_23.c (Part 2 of

2)

Program Output'a' was found in "This is a test".

'z' was not found in "This is a test".

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

401 /* Fig. 8.24: fig08_24.c

2 Using strcspn */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 /* initialize two char pointers */

9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "1234567890";

11

12 printf("%s%s\n%s%s\n\n%s\n%s%u",

13 "string1 = ", string1, "string2 = ", string2,

14 "The length of the initial segment of string1",

15 "containing no characters from string2 = ",

16 strcspn(string1, string2));

17

18 return 0; /* indicates successful termination */

19

20 } /* end main */

fig08_24.c

Program Output

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

411 /* Fig. 8.25: fig08_25.c

2 Using strpbrk */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 const char *string1 = "This is a test"; /* initialize char pointer */

9 const char *string2 = "beware"; /* initialize char pointer */

10

11 printf("%s\"%s\"\n'%c'%s\n\"%s\"\n",

12 "Of the characters in ", string2,

13 *strpbrk(string1, string2),

14 " is the first character to appear in ", string1);

15

16 return 0; /* indicates successful termination */

17

18 } /* end main */

fig08_25.c

Program OutputOf the characters in "beware"
'a' is the first character to appear in
"This is a test"

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

421 /* Fig. 8.26: fig08_26.c

2 Using strrchr */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 /* initialize char pointer */

9 const char *string1 = "A zoo has many animals "

10 "including zebras";

11 int c = 'z'; /* initialize c */

12

13 printf("%s\n%s'%c'%s\"%s\"\n",

14 "The remainder of string1 beginning with the",

15 "last occurrence of character ", c,

16 " is: ", strrchr(string1, c));

17

18 return 0; /* indicates successful termination */

19

20 } /* end main */

fig08_26.c

Program Output
The remainder of string1 beginning with the

last occurrence of character 'z' is: "zebras"

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

431 /* Fig. 8.27: fig08_27.c

2 Using strspn */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 /* initialize two char pointers */

9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "aehi lsTuv";

11

12 printf("%s%s\n%s%s\n\n%s\n%s%u\n",

13 "string1 = ", string1, "string2 = ", string2,

14 "The length of the initial segment of string1",

15 "containing only characters from string2 = ",

16 strspn(string1, string2));

17

18 return 0; /* indicates successful termination */

19

20 } /* end main */

fig08_27.c

Program Output
string1 = The value is 3.14159
string2 = aehi lsTuv

The length of the initial segment of string1
containing only characters from string2 = 13

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

441 /* Fig. 8.28: fig08_28.c

2 Using strstr */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 const char *string1 = "abcdefabcdef"; /* initialize char pointer */

9 const char *string2 = "def"; /* initialize char pointer */

10

11 printf("%s%s\n%s%s\n\n%s\n%s%s\n",

12 "string1 = ", string1, "string2 = ", string2,

13 "The remainder of string1 beginning with the",

14 "first occurrence of string2 is: ",

15 strstr(string1, string2));

16

17 return 0; /* indicates successful termination */

18

19 } /* end main */

fig08_28.c

Program Outputstring1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

45

fig08_29.c

1 /* Fig. 8.29: fig08_29.c

2 Using strtok */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 /* initialize array string */

9 char string[] = "This is a sentence with 7 tokens";

10 char *tokenPtr; /* create char pointer */

11

12 printf("%s\n%s\n\n%s\n",

13 "The string to be tokenized is:", string,

14 "The tokens are:");

15

16 tokenPtr = strtok(string, " "); /* begin tokenizing sentence */

17

18 /* continue tokenizing sentence until tokenPtr becomes NULL */

19 while (tokenPtr != NULL) {

20 printf("%s\n", tokenPtr);

21 tokenPtr = strtok(NULL, " "); /* get next token */

22 } /* end while */

23

24 return 0; /* indicates successful termination */

25

26 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

46

Program Output

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:
This
is
a
sentence
with
7
tokens

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

47

8.9 Memory Functions of the String-

handling Library

• Memory Functions

– In <stdlib.h>

– Manipulate, compare, and search blocks of memory

– Can manipulate any block of data

• Pointer parameters are void *

– Any pointer can be assigned to void *, and vice versa

– void * cannot be dereferenced

• Each function receives a size argument specifying the number

of bytes (characters) to process

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

48

8.9 Memory Functions of the String-

handling Library

Function prototype Function description
void *memcpy(void
*s1, const void *s2,
size_t n);

Copies n characters from the object pointed to by s2 into the object

pointed to by s1. A pointer to the resulting object is returned.

void *memmove(void
*s1, const void *s2,
size_t n);

Copies n characters from the object pointed to by s2 into the object

pointed to by s1. The copy is performed as if the characters were first

copied from the object pointed to by s2 into a temporary array and

then from the temporary array into the object pointed to by s1. A

pointer to the resulting object is returned.
int memcmp(const
void *s1, const void
*s2, size_t n);

Compares the first n characters of the objects pointed to by s1 and s2.

The function returns 0, less than 0 or greater than 0 if s1 is equal to,

less than or greater than s2.
void *memchr(const
void *s, int c,
size_t n);

Locates the first occurrence of c (converted to unsigned char) in the

first n characters of the object pointed to by s. If c is found, a pointer

to c in the object is returned. Otherwise, NULL is returned.
void *memset(void
*s, int c, size_t n
);

Copies c (converted to unsigned char) into the first n characters of

the object pointed to by s. A pointer to the result is returned.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

491 /* Fig. 8.31: fig08_31.c

2 Using memcpy */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 char s1[17]; /* create char array s1 */

9 char s2[] = "Copy this string"; /* initialize char array s2 */

10

11 memcpy(s1, s2, 17);

12 printf("%s\n%s\"%s\"\n",

13 "After s2 is copied into s1 with memcpy,",

14 "s1 contains ", s1);

15

16 return 0; /* indicates successful termination */

17

18 } /* end main */

fig08_31.c

Program Output

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

501 /* Fig. 8.32: fig08_32.c

2 Using memmove */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 char x[] = "Home Sweet Home"; /* initialize char array x */

9

10 printf("%s%s\n", "The string in array x before memmove is: ", x);

11 printf("%s%s\n", "The string in array x after memmove is: ",

12 memmove(x, &x[5], 10));

13

14 return 0; /* indicates successful termination */

15

16 } /* end main */

fig08_32.c

Program OutputThe string in array x before memmove is: Home Sweet Home

The string in array x after memmove is: Sweet Home Home

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

511 /* Fig. 8.33: fig08_33.c

2 Using memcmp */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 char s1[] = "ABCDEFG"; /* initialize char array s1 */

9 char s2[] = "ABCDXYZ"; /* initialize char array s2 */

10

11 printf("%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n",

12 "s1 = ", s1, "s2 = ", s2,

13 "memcmp(s1, s2, 4) = ", memcmp(s1, s2, 4),

14 "memcmp(s1, s2, 7) = ", memcmp(s1, s2, 7),

15 "memcmp(s2, s1, 7) = ", memcmp(s2, s1, 7));

16

17 return 0; /* indicate successful termination */

18

19 } /* end main */

fig08_33.c

Program Output
s1 = ABCDEFG

s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0

memcmp(s1, s2, 7) = -1

memcmp(s2, s1, 7) = 1

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

521 /* Fig. 8.34: fig08_34.c

2 Using memchr */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 const char *s = "This is a string"; /* initialize char pointer */

9

10 printf("%s\'%c\'%s\"%s\"\n",

11 "The remainder of s after character ", 'r',

12 " is found is ", memchr(s, 'r', 16));

13

14 return 0; /* indicates successful termination */

15

16 } /* end main */

Fig8_34.c

Program OutputThe remainder of s after character 'r' is found is "ring“

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

53

8.10 Other Functions of the String Handling

Library

• char *strerror(int errornum);

– Creates a system-dependent error message based on
errornum

– Returns a pointer to the string

• size_t strlen(const char *s);

– Returns the number of characters (before NULL) in string s

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

54

fig08_35.c

Program Output

1 /* Fig. 8.35: fig08_35.c

2 Using memset */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 char string1[15] = "BBBBBBBBBBBBBB"; /* initialize string1 */

9

10 printf("string1 = %s\n", string1);

11 printf("string1 after memset = %s\n", memset(string1, 'b', 7));

12

13 return 0; /* indicates successful termination */

14

15 } /* end main */

 string1 = BBBBBBBBBBBBBB

string1 after memset = bbbbbbbBBBBBBB

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

55

fig08_37.c

Program Output

No such file or directory

1 /* Fig. 8.37: fig08_37.c

2 Using strerror */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 printf("%s\n", strerror(2));

9

10 return 0; /* indicates successful termination */

11

12 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

561 /* Fig. 8.38: fig08_38.c

2 Using strlen */

3 #include <stdio.h>

4 #include <string.h>

5

6 int main()

7 {

8 /* initialize 3 char pointers */

9 const char *string1 = "abcdefghijklmnopqrstuvwxyz";

10 const char *string2 = "four";

11 const char *string3 = "Boston";

12

13 printf("%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n",

14 "The length of ", string1, " is ",

15 (unsigned long) strlen(string1),

16 "The length of ", string2, " is ",

17 (unsigned long) strlen(string2),

18 "The length of ", string3, " is ",

19 (unsigned long) strlen(string3));

20

21 return 0; /* indicates successful termination */

22

23 } /* end main */

fig08_38.c

Program OutputThe length of "abcdefghijklmnopqrstuvwxyz" is 26

The length of "four" is 4

The length of "Boston" is 6

