
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

Chapter 9 - Formatted Input/Output

Outline
9.1 Introduction

9.2 Streams

9.3 Formatting Output with printf
9.4 Printing Integers

9.5 Printing Floating-Point Numbers

9.6 Printing Strings and Characters

9.7 Other Conversion Specifiers

9.8 Printing with Field Widths and Precisions

9.9 Using Flags in the printf Format-Control String

9.10 Printing Literals and Escape Sequences

9.11 Formatting Input with scanf

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Objectives

• In this chapter, you will learn:

– To understand input and output streams.

– To be able to use all print formatting capabilities.

– To be able to use all input formatting capabilities.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

9.1 Introduction

• In this chapter

– Presentation of results

– scanf and printf

– Streams (input and output)

• gets, puts, getchar, putchar (in <stdio.h>)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

9.2 Streams

• Streams

– Sequences of characters organized into lines

• Each line consists of zero or more characters and ends with

newline character

• ANSI C must support lines of at least 254 characters

– Performs all input and output

– Can often be redirected

• Standard input – keyboard

• Standard output – screen

• Standard error – screen

• More in Chapter 11

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

9.3 Formatting Output with printf

• printf

– Precise output formatting

• Conversion specifications: flags, field widths, precisions, etc.

– Can perform rounding, aligning columns, right/left

justification, inserting literal characters, exponential format,

hexadecimal format, and fixed width and precision

• Format

– printf(format-control-string, other-arguments);

– Format control string: describes output format

– Other-arguments: correspond to each conversion

specification in format-control-string

• Each specification begins with a percent sign(%), ends with

conversion specifier

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

9.4 Printing Integers

Conversion Specifier Description

d Display a signed decimal integer.

i Display a signed decimal integer. (Note: The i and d specifiers

are different when used with scanf.)
o Display an unsigned octal integer.
u Display an unsigned decimal integer.

x or X Display an unsigned hexadecimal integer. X causes the digits 0-9

and the letters A-F to be displayed and x causes the digits 0-9

and a-f to be displayed.

h or l (letter l) Place before any integer conversion specifier to indicate that a

short or long integer is displayed respectively. Letters h and l

are more precisely called length modifiers.

Fig. 9.1 Integer conversion specifiers.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

9.4 Printing Integers

• Integer

– Whole number (no decimal point): 25, 0, -9

– Positive, negative, or zero

– Only minus sign prints by default (later we shall change this)

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

fig09_02.c

1 /* Fig 9.2: fig09_02.c */

2 /* Using the integer conversion specifiers */

3 #include <stdio.h>

4

5 int main()

6 {

7 printf("%d\n", 455);

8 printf("%i\n", 455); /* i same as d in printf */

9 printf("%d\n", +455);

10 printf("%d\n", -455);

11 printf("%hd\n", 32000);

12 printf("%ld\n", 2000000000);

13 printf("%o\n", 455);

14 printf("%u\n", 455);

15 printf("%u\n", -455);

16 printf("%x\n", 455);

17 printf("%X\n", 455);

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

9

Program Ouptut

455
455
455
-455
32000
2000000000
707
455
4294966841
1c7
1C7

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

10

9.5 Printing Floating-Point Numbers

• Floating Point Numbers

– Have a decimal point (33.5)

– Exponential notation (computer's version of scientific

notation)

• 150.3 is 1.503 x 10² in scientific

• 150.3 is 1.503E+02 in exponential (E stands for exponent)

• use e or E

– f – print floating point with at least one digit to left of

decimal

– g (or G) - prints in f or e with no trailing zeros (1.2300

becomes 1.23)

• Use exponential if exponent less than -4, or greater than or

equal to precision (6 digits by default)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11

9.5 Printing Floating-Point Numbers

Conversion specifier Description

e or E Display a floating-point value in exponential notation.

f Display floating-point values.

g or G Display a floating-point value in either the floating-point form f or the

exponential form e (or E).

L Place before any floating-point conversion specifier to indicate that a

long double floating-point value is displayed.

Fig. 9.3 Floating-point conversion specifiers.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

fig09_04.c

Program Output

1.234568e+006

1.234568e+006

-1.234568e+006

1.234568E+006

1234567.890000

1.23457e+006

1.23457E+006

1 /* Fig 9.4: fig09_04.c */

2 /* Printing floating-point numbers with

3 floating-point conversion specifiers */

4

5 #include <stdio.h>

6

7 int main()

8 {

9 printf("%e\n", 1234567.89);

10 printf("%e\n", +1234567.89);

11 printf("%e\n", -1234567.89);

12 printf("%E\n", 1234567.89);

13 printf("%f\n", 1234567.89);

14 printf("%g\n", 1234567.89);

15 printf("%G\n", 1234567.89);

16

17 return 0; /* indicates successful termination */

18

19 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

9.6 Printing Strings and Characters

• c

– Prints char argument

– Cannot be used to print the first character of a string

• s

– Requires a pointer to char as an argument

– Prints characters until NULL ('\0') encountered

– Cannot print a char argument

• Remember

– Single quotes for character constants ('z')

– Double quotes for strings "z" (which actually contains two

characters, 'z' and '\0')

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14

fig09_05.c

A
This is a string
This is a string
This is also a string

1 /* Fig 9.5: fig09_05c */

2 /* Printing strings and characters */

3 #include <stdio.h>

4

5 int main()

6 {

7 char character = 'A'; /* initialize char */

8 char string[] = "This is a string"; /* initialize char array */

9 const char *stringPtr = "This is also a string"; /* char pointer */

10

11 printf("%c\n", character);

12 printf("%s\n", "This is a string");

13 printf("%s\n", string);

14 printf("%s\n", stringPtr);

15

16 return 0; /* indicates successful termination */

17

18 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15

9.7 Other Conversion Specifiers

• p

– Displays pointer value (address)

• n

– Stores number of characters already output by current

printf statement

– Takes a pointer to an integer as an argument

– Nothing printed by a %n specification

– Every printf call returns a value

• Number of characters output

• Negative number if error occurs

• %

– Prints a percent sign

– %%

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

16

9.7 Other Conversion Specifiers

Conversion specifier Description

p Display a pointer value in an implementation-defined manner.

n Store the number of characters already output in the current

printf statement. A pointer to an integer is supplied as the

corresponding argument. Nothing is displayed.

% Display the percent character.

Fig. 9.6 Other conversion specifiers.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

17

fig09_07.c (1 of 2)

1 /* Fig 9.7: fig09_07.c */

2 /* Using the p, n, and % conversion specifiers */

3 #include <stdio.h>

4

5 int main()

6 {

7 int *ptr; /* define pointer to int */

8 int x = 12345; /* initialize int x */

9 int y; /* define int y */

10

11 ptr = &x; /* assign address of x to ptr */

12 printf("The value of ptr is %p\n", ptr);

13 printf("The address of x is %p\n\n", &x);

14

15 printf("Total characters printed on this line:%n", &y);

16 printf(" %d\n\n", y);

17

18 y = printf("This line has 28 characters\n");

19 printf("%d characters were printed\n\n", y);

20

21 printf("Printing a %% in a format control string\n");

22

23 return 0; /* indicates successful termination */

24

25 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

18
The value of ptr is 0012FF78

The address of x is 0012FF78

Total characters printed on this line: 38

This line has 28 characters

28 characters were printed

Printing a % in a format control string

Program Output

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19

9.8 Printing with Field Widths and

Precisions

• Field width

– Size of field in which data is printed

– If width larger than data, default right justified

• If field width too small, increases to fit data

• Minus sign uses one character position in field

– Integer width inserted between % and conversion specifier

– %4d – field width of 4

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

20

9.8 Printing with Field Widths and

Precisions

• Precision

– Meaning varies depending on data type

– Integers (default 1)

• Minimum number of digits to print

– If data too small, prefixed with zeros

– Floating point

• Number of digits to appear after decimal (e and f)

– For g – maximum number of significant digits

– Strings

• Maximum number of characters to be written from string

– Format

• Use a dot (.) then precision number after %

%.3f

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21

9.8 Printing with Field Widths and

Precisions

• Field width and precision

– Can both be specified

• %width.precision

%5.3f

– Negative field width – left justified

– Positive field width – right justified

– Precision must be positive

– Can use integer expressions to determine field width and

precision values

• Place an asterisk (*) in place of the field width or precision

– Matched to an int argument in argument list

• Example:

printf("%*.*f", 7, 2, 98.736);

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22

fig09_08.c

1 /* Fig 9.8: fig09_08.c */

2 /* Printing integers right-justified */

3 #include <stdio.h>

4

5 int main()

6 {

7 printf("%4d\n", 1);

8 printf("%4d\n", 12);

9 printf("%4d\n", 123);

10 printf("%4d\n", 1234);

11 printf("%4d\n\n", 12345);

12

13 printf("%4d\n", -1);

14 printf("%4d\n", -12);

15 printf("%4d\n", -123);

16 printf("%4d\n", -1234);

17 printf("%4d\n", -12345);

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23
1
12
123

1234
12345

-1
-12

-123
-1234
-12345

Program Output

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

fig09_09.c

1 /* Fig 9.9: fig09_09.c */

2 /* Using precision while printing integers,

3 floating-point numbers, and strings */

4 #include <stdio.h>

5

6 int main()

7 {

8 int i = 873; /* initialize int i */

9 double f = 123.94536; /* initialize double f */

10 char s[] = "Happy Birthday"; /* initialize char array s */

11

12 printf("Using precision for integers\n");

13 printf("\t%.4d\n\t%.9d\n\n", i, i);

14

15 printf("Using precision for floating-point numbers\n");

16 printf("\t%.3f\n\t%.3e\n\t%.3g\n\n", f, f, f);

17

18 printf("Using precision for strings\n");

19 printf("\t%.11s\n", s);

20

21 return 0; /* indicates successful termination */

22

23 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25
Using precision for integers

0873
000000873

Using precision for floating-point numbers
123.945
1.239e+002
124

Using precision for strings
Happy Birth

Program Output

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

9.9 Using Flags in the printf

Format-Control String• Flags

– Supplement formatting capabilities

– Place flag immediately to the right of percent sign

– Several flags may be combined

Flag Description

- (minus sign) Left-justify the output within the specified field.

+ (plus sign) Display a plus sign preceding positive values and a minus sign

preceding negative values.

space Print a space before a positive value not printed with the + flag.

Prefix 0 to the output value when used with the octal conversion

specifier o.

 Prefix 0x or 0X to the output value when used with the hexadecimal

conversion specifiers x or X.

 Force a decimal point for a floating-point number printed with e, E,

f, g or G that does not contain a fractional part. (Normally the

decimal point is only printed if a digit follows it.) For g and G

specifiers, trailing zeros are not eliminated.

0 (zero) Pad a field with leading zeros.

Fig. 9.10 Format control string flags.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27

fig09_11.c

Program Output
hello 7 a 1.230000

hello 7 a 1.230000

1 /* Fig 9.11: fig09_11.c */

2 /* Right justifying and left justifying values */

3 #include <stdio.h>

4

5 int main()

6 {

7 printf("%10s%10d%10c%10f\n\n", "hello", 7, 'a', 1.23);

8 printf("%-10s%-10d%-10c%-10f\n", "hello", 7, 'a', 1.23);

9

10 return 0; /* indicates successful termination */

11

12 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

fig09_12.c

Program Output
786
-786
+786
-786

1 /* Fig 9.12: fig09_12.c */

2 /* Printing numbers with and without the + flag */

3 #include <stdio.h>

4

5 int main()

6 {

7 printf("%d\n%d\n", 786, -786);

8 printf("%+d\n%+d\n", 786, -786);

9

10 return 0; /* indicates successful termination */

11

12 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

29

fig09_13.c

Program Output
547

-547

1 /* Fig 9.13: fig09_13.c */

2 /* Printing a space before signed values

3 not preceded by + or - */

4 #include <stdio.h>

5

6 int main()

7 {

8 printf("% d\n% d\n", 547, -547);

9

10 return 0; /* indicates successful termination */

11

12 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

30

02623

0x593

0X593

1427

1427.00

fig09_14.c

Program Output

1 /* Fig 9.14: fig09_14.c */

2 /* Using the # flag with conversion specifiers

3 o, x, X and any floating-point specifier */

4 #include <stdio.h>

5

6 int main()

7 {

8 int c = 1427; /* initialize c */

9 double p = 1427.0; /* initialize p */

10

11 printf("%#o\n", c);

12 printf("%#x\n", c);

13 printf("%#X\n", c);

14 printf("\n%g\n", p);

15 printf("%#g\n", p);

16

17 return 0; /* indicates successful termination */

18

19 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

31

fig09_15.c

Program Output
+00000452

000000452

1 /* Fig 9.15: fig09_15.c */

2 /* Printing with the 0(zero) flag fills in leading zeros */

3 #include <stdio.h>

4

5 int main()

6 {

7 printf("%+09d\n", 452);

8 printf("%09d\n", 452);

9

10 return 0; /* indicates successful termination */

11

12 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

32

9.10 Printing Literals and Escape

Sequences

• Printing Literals

– Most characters can be printed

– Certain "problem" characters, such as the quotation mark "

– Must be represented by escape sequences

• Represented by a backslash \ followed by an escape character

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

33

9.10 Printing Literals and Escape

Sequences

Escape sequence Description

\' Output the single quote (') character.

\" Output the double quote (") character.

\? Output the question mark (?) character.

\\ Output the backslash (\) character.

\a Cause an audible (bell) or visual alert.

\b Move the cursor back one position on the current line.

\f Move the cursor to the start of the next logical page.

\n Move the cursor to the beginning of the next line.

\r Move the cursor to the beginning of the current line.

\t Move the cursor to the next horizontal tab position.

\v Move the cursor to the next vertical tab position.

Fig. 9.16 Escape sequences.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

34

9.11 Formatting Input with scanf

Conversion specifier Description

Integers

d Read an optionally signed decimal integer. The corresponding argument is a

pointer to integer.

i Read an optionally signed decimal, octal, or hexadecimal integer. The

corresponding argument is a pointer to integer.

o Read an \octal integer. The corresponding argument is a pointer to unsigned

integer.

u Read an unsigned decimal integer. The corresponding argument is a pointer to

unsigned integer.

x or X Read a hexadecimal integer. The corresponding argument is a pointer to

unsigned integer.

h or l Place before any of the integer conversion specifiers to indicate that a short

or long integer is to be input.

Fig. 9.17 Conversion specifiers for scanf.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

35

9.11 Formatting Input with scanf
Conversion
specifier

Description

Floating-point

numbers

e, E, f, g or G Read a floating-point value. The corresponding argument is a

pointer to a floating-point variable.

l or L Place before any of the floating-point conversion specifiers to

indicate that a double or long double value is to be input.

Characters and

strings

C Read a character. The corresponding argument is a pointer to

char, no null ('\0') is added.

S Read a string. The corresponding argument is a pointer to an ar-

ray of type char that is large enough to hold the string and a

terminating null ('\0') character—which is automatically

added.

Scan set

[scan characters Scan a string for a set of characters that are stored in an array.

Miscellaneous

P Read an address of the same form produced when an address is

output with %p in a printf statement.

N Store the number of characters input so far in this scanf. The

corresponding argument is a pointer to integer

% Skip a percent sign (%) in the input.

Fig. 9.17 Conversion specifiers for scanf.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

36

9.11 Formatting Input with scanf

• scanf
– Input formatting

– Capabilities

• Input all types of data

• Input specific characters

• Skip specific characters

• Format
– scanf(format-control-string, other-arguments);

– Format-control-string

• Describes formats of inputs

– Other-arguments

• Pointers to variables where input will be stored

– Can include field widths to read a specific number of
characters from the stream

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

37

9.11 Formatting Input with scanf

• Scan sets

– Set of characters enclosed in square brackets []

• Preceded by % sign

– Scans input stream, looking only for characters in scan set

• Whenever a match occurs, stores character in specified array

• Stops scanning once a character not in the scan set is found

– Inverted scan sets

• Use a caret ^: [^aeiou]

• Causes characters not in the scan set to be stored

• Skipping characters

– Include character to skip in format control

– Or, use * (assignment suppression character)

• Skips any type of character without storing it

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

381 /* Fig 9.18: fig09_18.c */

2 /* Reading integers */

3 #include <stdio.h>

4

5 int main()

6 {

7 int a; /* define a */

8 int b; /* define b */

9 int c; /* define c */

10 int d; /* define d */

11 int e; /* define e */

12 int f; /* define f */

13 int g; /* define g */

14

15 printf("Enter seven integers: ");

16 scanf("%d%i%i%i%o%u%x", &a, &b, &c, &d, &e, &f, &g);

17

18 printf("The input displayed as decimal integers is:\n");

19 printf("%d %d %d %d %d %d %d\n", a, b, c, d, e, f, g);

20

21 return 0; /* indicates successful termination */

22

23 } /* end main */

Enter seven integers: -70 -70 070 0x70 70 70 70

The input displayed as decimal integers is:

-70 -70 56 112 56 70 112

fig09_18.c

Program Output

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

39

fig09_19.c

1 /* Fig 9.19: fig09_19.c */

2 /* Reading floating-point numbers */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 double a; /* define a */

9 double b; /* define b */

10 double c; /* define c */

11

12 printf("Enter three floating-point numbers: \n");

13 scanf("%le%lf%lg", &a, &b, &c);

14

15 printf("Here are the numbers entered in plain\n");

16 printf("floating-point notation:\n");

17 printf("%f\n%f\n%f\n", a, b, c);

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

40

Enter a string: Sunday
The input was:
the character "S" and the string "unday"

fig09_20.c

Program Output

1 /* Fig 9.20: fig09_20.c */

2 /* Reading characters and strings */

3 #include <stdio.h>

4

5 int main()

6 {

7 char x; /* define x */

8 char y[9]; /* define array y */

9

10 printf("Enter a string: ");

11 scanf("%c%s", &x, y);

12

13 printf("The input was:\n");

14 printf("the character \"%c\" ", x);

15 printf("and the string \"%s\"\n", y);

16

17 return 0; /* indicates successful termination */

18

19 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

41

Enter string: ooeeooahah
The input was "ooeeooa"

fig09_21.c

Program Output

1 /* Fig 9.21: fig09_21.c */

2 /* Using a scan set */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 char z[9]; /* define array z */

9

10 printf("Enter string: ");

11 scanf("%[aeiou]", z); /* search for set of characters */

12

13 printf("The input was \"%s\"\n", z);

14

15 return 0; /* indicates successful termination */

16

17 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

42

Enter a string: String
The input was "Str"

fig09_22.c

Program Output

1 /* Fig 9.22: fig09_22.c */

2 /* Using an inverted scan set */

3 #include <stdio.h>

4

5 int main()

6 {

7 char z[9] = { '\0' }; /* initialize array z */

8

9 printf("Enter a string: ");

10 scanf("%[^aeiou]", z); /* inverted scan set */

11

12 printf("The input was \"%s\"\n", z);

13

14 return 0; /* indicates successful termination */

15

16 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

43

Enter a six digit integer: 123456

The integers input were 12 and 3456

fig09_23.c

Program Output

1 /* Fig 9.23: fig09_23.c */

2 /* inputting data with a field width */

3 #include <stdio.h>

4

5 int main()

6 {

7 int x; /* define x */

8 int y; /* define y */

9

10 printf("Enter a six digit integer: ");

11 scanf("%2d%d", &x, &y);

12

13 printf("The integers input were %d and %d\n", x, y);

14

15 return 0; /* indicates successful termination */

16

17 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

44

fig09_24.c

1 /* Fig 9.24: fig09_24.c */

2 /* Reading and discarding characters from the input stream */

3 #include <stdio.h>

4

5 int main()

6 {

7 int month1; /* define month1 */

8 int day1; /* define day1 */

9 int year1; /* define year1 */

10 int month2; /* define month2 */

11 int day2; /* define day2 */

12 int year2; /* define year2 */

13

14 printf("Enter a date in the form mm-dd-yyyy: ");

15 scanf("%d%*c%d%*c%d", &month1, &day1, &year1);

16

17 printf("month = %d day = %d year = %d\n\n", month1, day1, year1);

18

19 printf("Enter a date in the form mm/dd/yyyy: ");

20 scanf("%d%*c%d%*c%d", &month2, &day2, &year2);

21

22 printf("month = %d day = %d year = %d\n", month2, day2, year2);

23

24 return 0; /* indicates successful termination */

25

26 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

45

Program Output

Enter a date in the form mm-dd-yyyy: 11-18-2003

month = 11 day = 18 year = 2003

Enter a date in the form mm/dd/yyyy: 11/18/2003

month = 11 day = 18 year = 2003

