
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

Chapter 10 - C Structures, Unions, Bit

Manipulations, and Enumerations
Outline
10.1 Introduction

10.2 Structure Definitions

10.3 Initializing Structures

10.4 Accessing Members of Structures

10.5 Using Structures with Functions

10.6 typedef
10.7 Example: High-Performance Card Shuffling and Dealing Simulation

10.8 Unions

10.9 Bitwise Operators

10.10 Bit Fields

10.11 Enumeration Constants

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Objectives

• In this tutorial, you will learn:

– To be able to create and use structures, unions and

enumerations.

– To be able to pass structures to functions call by value and

call by reference.

– To be able to manipulate data with the bitwise operators.

– To be able to create bit fields for storing data compactly.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

10.1 Introduction

• Structures

– Collections of related variables (aggregates) under one name

• Can contain variables of different data types

– Commonly used to define records to be stored in files

– Combined with pointers, can create linked lists, stacks,

queues, and trees

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

10.2 Structure Definitions

• Example
struct card {

char *face;

char *suit;
};

– struct introduces the definition for structure card

– card is the structure name and is used to declare variables

of the structure type

– card contains two members of type char *

• These members are face and suit

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

10.2 Structure Definitions

• struct information

– A struct cannot contain an instance of itself

– Can contain a member that is a pointer to the same structure type

– A structure definition does not reserve space in memory

• Instead creates a new data type used to define structure variables

• Definitions

– Defined like other variables:

card oneCard, deck[52], *cPtr;

– Can use a comma separated list:

struct card {

char *face;

char *suit;

} oneCard, deck[52], *cPtr;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

10.2 Structure Definitions

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

10.2 Structure Definitions

• Valid Operations

– Assigning a structure to a structure of the same type

– Taking the address (&) of a structure

– Accessing the members of a structure

– Using the sizeof operator to determine the size of a

structure

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

10.3 Initializing Structures

• Initializer lists

– Example:

card oneCard = { "Three", "Hearts" };

• Assignment statements

– Example:

card threeHearts = oneCard;

– Could also define and initialize threeHearts as follows:

card threeHearts;

threeHearts.face = “Three”;

threeHearts.suit = “Hearts”;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

9

10.4 Accessing Members of Structures

• Accessing structure members

– Dot operator (.) used with structure variables

card myCard;

printf("%s", myCard.suit);

– Arrow operator (->) used with pointers to structure variables

card *myCardPtr = &myCard;

printf("%s", myCardPtr->suit);

– myCardPtr->suit is equivalent to

(*myCardPtr).suit

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

10

fig10_02.c (Part 1 of

2)

1 /* Fig. 10.2: fig10_02.c

2 Using the structure member and

3 structure pointer operators */

4 #include <stdio.h>

5

6 /* card structure definition */

7 struct card {

8 char *face; /* define pointer face */

9 char *suit; /* define pointer suit */

10 }; /* end structure card */

11

12 int main()

13 {

14 struct card a; /* define struct a */

15 struct card *aPtr; /* define a pointer to card */

16

17 /* place strings into card structures */

18 a.face = "Ace";

19 a.suit = "Spades";

20

21 aPtr = &a; /* assign address of a to aPtr */

22

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11

fig10_02.c (Part 2 of

2)

Program Output

Ace of Spades
Ace of Spades
Ace of Spades

23 printf("%s%s%s\n%s%s%s\n%s%s%s\n", a.face, " of ", a.suit,

24 aPtr->face, " of ", aPtr->suit,

25 (*aPtr).face, " of ", (*aPtr).suit);

26

27 return 0; /* indicates successful termination */

28

29 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

10.5 Using Structures With Functions

• Passing structures to functions

– Pass entire structure

• Or, pass individual members

– Both pass call by value

• To pass structures call-by-reference

– Pass its address

– Pass reference to it

• To pass arrays call-by-value

– Create a structure with the array as a member

– Pass the structure

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

10.6 typedef

• typedef

– Creates synonyms (aliases) for previously defined data types

– Use typedef to create shorter type names

– Example:

typedef struct Card *CardPtr;

– Defines a new type name CardPtr as a synonym for type
struct Card *

– typedef does not create a new data type

• Only creates an alias

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14

10.7 Example: High-Performance Card-
shuffling and Dealing Simulation

• Pseudocode:

– Create an array of card structures

– Put cards in the deck

– Shuffle the deck

– Deal the cards

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15

fig10_03.c (Part 1 of

4)

1 /* Fig. 10.3: fig10_03.c

2 The card shuffling and dealing program using structures */

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <time.h>

6

7 /* card structure definition */

8 struct card {

9 const char *face; /* define pointer face */

10 const char *suit; /* define pointer suit */

11 }; /* end structure card */

12

13 typedef struct card Card;

14

15 /* prototypes */

16 void fillDeck(Card * const wDeck, const char * wFace[],

17 const char * wSuit[]);

18 void shuffle(Card * const wDeck);

19 void deal(const Card * const wDeck);

20

21 int main()

22 {

23 Card deck[52]; /* define array of Cards */

24

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

16

fig10_03.c (Part 2 of

4)

25 /* initialize array of pointers */

26 const char *face[] = { "Ace", "Deuce", "Three", "Four", "Five",

27 "Six", "Seven", "Eight", "Nine", "Ten",

28 "Jack", "Queen", "King"};

29

30 /* initialize array of pointers */

31 const char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades"};

32

33 srand(time(NULL)); /* randomize */

34

35 fillDeck(deck, face, suit); /* load the deck with Cards */

36 shuffle(deck); /* put Cards in random order */

37 deal(deck); /* deal all 52 Cards */

38

39 return 0; /* indicates successful termination */

40

41 } /* end main */

42

43 /* place strings into Card structures */

44 void fillDeck(Card * const wDeck, const char * wFace[],

45 const char * wSuit[])

46 {

47 int i; /* counter */

48

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

17

fig10_03.c (3 of 4)

49 /* loop through wDeck */

50 for (i = 0; i <= 51; i++) {

51 wDeck[i].face = wFace[i % 13];

52 wDeck[i].suit = wSuit[i / 13];

53 } /* end for */

54

55 } /* end function fillDeck */

56

57 /* shuffle cards */

58 void shuffle(Card * const wDeck)

59 {

60 int i; /* counter */

61 int j; /* variable to hold random value between 0 - 51 */

62 Card temp; /* define temporary structure for swapping Cards */

63

64 /* loop through wDeck randomly swapping Cards */

65 for (i = 0; i <= 51; i++) {

66 j = rand() % 52;

67 temp = wDeck[i];

68 wDeck[i] = wDeck[j];

69 wDeck[j] = temp;

70 } /* end for */

71

72 } /* end function shuffle */

73

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

18

fig10_03.c (4 of 4)

74 /* deal cards */

75 void deal(const Card * const wDeck)

76 {

77 int i; /* counter */

78

79 /* loop through wDeck */

80 for (i = 0; i <= 51; i++) {

81 printf("%5s of %-8s%c", wDeck[i].face, wDeck[i].suit,

82 (i + 1) % 2 ? '\t' : '\n');

83 } /* end for */

84

85 } /* end function deal */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19

Program Output

Four of Clubs Three of Hearts
Three of Diamonds Three of Spades
Four of Diamonds Ace of Diamonds
Nine of Hearts Ten of Clubs

Three of Clubs Four of Hearts
Eight of Clubs Nine of Diamonds
Deuce of Clubs Queen of Clubs
Seven of Clubs Jack of Spades

Ace of Clubs Five of Diamonds
Ace of Spades Five of Clubs

Seven of Diamonds Six of Spades
Eight of Spades Queen of Hearts
Five of Spades Deuce of Diamonds

Queen of Spades Six of Hearts
Queen of Diamonds Seven of Hearts
Jack of Diamonds Nine of Spades

Eight of Hearts Five of Hearts
King of Spades Six of Clubs

Eight of Diamonds Ten of Spades
Ace of Hearts King of Hearts
Four of Spades Jack of Hearts

Deuce of Hearts Jack of Clubs
Deuce of Spades Ten of Diamonds
Seven of Spades Nine of Clubs
King of Clubs Six of Diamonds
Ten of Hearts King of Diamonds

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

20

10.8 Unions

• union

– Memory that contains a variety of objects over time

– Only contains one data member at a time

– Members of a union share space

– Conserves storage

– Only the last data member defined can be accessed

• union definitions

– Same as struct

union Number {

int x;

float y;

};

union Number value;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21

10.8 Unions

• Valid union operations

– Assignment to union of same type: =

– Taking address: &

– Accessing union members: .

– Accessing members using pointers: ->

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22

fig10_05.c (1 of 2)

1 /* Fig. 10.5: fig10_05.c

2 An example of a union */

3 #include <stdio.h>

4

5 /* number union definition */

6 union number {

7 int x; /* define int x */

8 double y; /* define double y */

9 }; /* end union number */

10

11 int main()

12 {

13 union number value; /* define union value */

14

15 value.x = 100; /* put an integer into the union */

16 printf("%s\n%s\n%s%d\n%s%f\n\n",

17 "Put a value in the integer member",

18 "and print both members.",

19 "int: ", value.x,

20 "double:\n", value.y);

21

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23

fig10_05.c (2 of 2)

Put a value in the integer member
and print both members.
int: 100
double:
-92559592117433136000.000000

Put a value in the floating member
and print both members.
int: 0
double:
100.000000

22 value.y = 100.0; /* put a double into the same union */

23 printf("%s\n%s\n%s%d\n%s%f\n",

24 "Put a value in the floating member",

25 "and print both members.",

26 "int: ", value.x,

27 "double:\n", value.y);

28

29 return 0; /* indicates successful termination */

30

31 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

10.9 Bitwise Operators

• All data represented internally as sequences of bits

– Each bit can be either 0 or 1

– Sequence of 8 bits forms a byte

Operator Description

& bitwise AND The bits in the result are set to 1 if the corresponding bits in the

two operands are both 1.

| bitwise inclusive

OR

The bits in the result are set to 1 if at least one of the

corresponding bits in the two operands is 1.

^ bitwise exclusive

OR

The bits in the result are set to 1 if exactly one of the

corresponding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of bits

specified by the second operand; fill from the right with 0 bits.

>> right shift Shifts the bits of the first operand right by the number of bits

specified by the second operand; the method of filling from the

left is machine dependent.

~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 10.6 The bitwise operators.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

fig10_07.c (1 of 2)

1 /* Fig. 10.7: fig10_07.c

2 Printing an unsigned integer in bits */

3 #include <stdio.h>

4

5 void displayBits(unsigned value); /* prototype */

6

7 int main()

8 {

9 unsigned x; /* variable to hold user input */

10

11 printf("Enter an unsigned integer: ");

12 scanf("%u", &x);

13

14 displayBits(x);

15

16 return 0; /* indicates successful termination */

17

18 } /* end main */

19

20 /* display bits of an unsigned integer value */

21 void displayBits(unsigned value)

22 {

23 unsigned c; /* counter */

24

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

fig10_07.c (2 of 2)

Enter an unsigned integer: 65000
65000 = 00000000 00000000 11111101 11101000

25 /* define displayMask and left shift 31 bits */

26 unsigned displayMask = 1 << 31;

27

28 printf("%7u = ", value);

29

30 /* loop through bits */

31 for (c = 1; c <= 32; c++) {

32 putchar(value & displayMask ? '1' : '0');

33 value <<= 1; /* shift value left by 1 */

34

35 if (c % 8 == 0) { /* output space after 8 bits */

36 putchar(' ');

37 } /* end if */

38

39 } /* end for */

40

41 putchar('\n');

42 } /* end function displayBits */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27

10.9 Bitwise Operators

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

Fig. 10.8 Results of combining two bits with the bitwise AND operator &.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

fig10_09.c (1 of 4)

1 /* Fig. 10.9: fig10_09.c

2 Using the bitwise AND, bitwise inclusive OR, bitwise

3 exclusive OR and bitwise complement operators */

4 #include <stdio.h>

5

6 void displayBits(unsigned value); /* prototype */

7

8 int main()

9 {

10 unsigned number1; /* define number1 */

11 unsigned number2; /* define number2 */

12 unsigned mask; /* define mask */

13 unsigned setBits; /* define setBits */

14

15 /* demonstrate bitwise & */

16 number1 = 65535;

17 mask = 1;

18 printf("The result of combining the following\n");

19 displayBits(number1);

20 displayBits(mask);

21 printf("using the bitwise AND operator & is\n");

22 displayBits(number1 & mask);

23

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

29

fig10_09.c (2 of 4)

24 /* demonstrate bitwise | */

25 number1 = 15;

26 setBits = 241;

27 printf("\nThe result of combining the following\n");

28 displayBits(number1);

29 displayBits(setBits);

30 printf("using the bitwise inclusive OR operator | is\n");

31 displayBits(number1 | setBits);

32

33 /* demonstrate bitwise exclusive OR */

34 number1 = 139;

35 number2 = 199;

36 printf("\nThe result of combining the following\n");

37 displayBits(number1);

38 displayBits(number2);

39 printf("using the bitwise exclusive OR operator ^ is\n");

40 displayBits(number1 ^ number2);

41

42 /* demonstrate bitwise complement */

43 number1 = 21845;

44 printf("\nThe one's complement of\n");

45 displayBits(number1);

46 printf("is\n");

47 displayBits(~number1);

48

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

30

fig10_09.c (3 of 4)

49 return 0; /* indicates successful termination */

50

51 } /* end main */

52

53 /* display bits of an unsigned integer value */

54 void displayBits(unsigned value)

55 {

56 unsigned c; /* counter */

57

58 /* declare displayMask and left shift 31 bits */

59 unsigned displayMask = 1 << 31;

60

61 printf("%10u = ", value);

62

63 /* loop through bits */

64 for (c = 1; c <= 32; c++) {

65 putchar(value & displayMask ? '1' : '0');

66 value <<= 1; /* shift value left by 1 */

67

68 if (c % 8 == 0) { /* output a space after 8 bits */

69 putchar(' ');

70 } /* end if */

71

72 } /* end for */

73

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

31

fig10_09.c (4 of 4)

Program Output

The result of combining the following

65535 = 00000000 00000000 11111111 11111111

1 = 00000000 00000000 00000000 00000001

using the bitwise AND operator & is

1 = 00000000 00000000 00000000 00000001

The result of combining the following

15 = 00000000 00000000 00000000 00001111

241 = 00000000 00000000 00000000 11110001

using the bitwise inclusive OR operator | is

255 = 00000000 00000000 00000000 11111111

The result of combining the following

139 = 00000000 00000000 00000000 10001011

199 = 00000000 00000000 00000000 11000111

using the bitwise exclusive OR operator ^ is

76 = 00000000 00000000 00000000 01001100

The one's complement of

21845 = 00000000 00000000 01010101 01010101

is

4294945450 = 11111111 11111111 10101010 10101010

74 putchar('\n');

75 } /* end function displayBits */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

32

10.9 Bitwise Operators

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. 10.11 Results of combining two bits with the bitwise inclusive OR

operator |.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

33

10.9 Bitwise Operators

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Fig. 10.12 Results of combining two bits with the bitwise exclusive OR

operator ^.

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

34

fig10_13.c (1 of 2)

1 /* Fig. 10.13: fig10_13.c

2 Using the bitwise shift operators */

3 #include <stdio.h>

4

5 void displayBits(unsigned value); /* prototype */

6

7 int main()

8 {

9 unsigned number1 = 960; /* initialize number1 */

10

11 /* demonstrate bitwise left shift */

12 printf("\nThe result of left shifting\n");

13 displayBits(number1);

14 printf("8 bit positions using the ");

15 printf("left shift operator << is\n");

16 displayBits(number1 << 8);

17

18 /* demonstrate bitwise right shift */

19 printf("\nThe result of right shifting\n");

20 displayBits(number1);

21 printf("8 bit positions using the ");

22 printf("right shift operator >> is\n");

23 displayBits(number1 >> 8);

24

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

35

fig10_13.c (2 of 2)

25 return 0; /* indicates successful termination */

26

27 } /* end main */

28

29 /* display bits of an unsigned integer value */

30 void displayBits(unsigned value)

31 {

32 unsigned c; /* counter */

33

34 /* declare displayMask and left shift 31 bits */

35 unsigned displayMask = 1 << 31;

36

37 printf("%7u = ", value);

38

39 /* loop through bits */

40 for (c = 1; c <= 32; c++) {

41 putchar(value & displayMask ? '1' : '0');

42 value <<= 1; /* shift value left by 1 */

43

44 if (c % 8 == 0) { /* output a space after 8 bits */

45 putchar(' ');

46 } /* end if */

47

48 } /* end for */

49

50 putchar('\n');

51 } /* end function displayBits */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

36

Program Output

The result of left shifting
960 = 00000000 00000000 00000011 11000000

8 bit positions using the left shift operator << is
245760 = 00000000 00000011 11000000 00000000

The result of right shifting
960 = 00000000 00000000 00000011 11000000

8 bit positions using the right shift operator >> is
3 = 00000000 00000000 00000000 00000011

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

37

10.9 Bitwise Operators

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.

^= Bitwise exclusive OR assignment operator.

<<= Left-shift assignment operator.

>>= Right-shift assignment operator.

Fig. 10.14 The bitwise assignment operators.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

38

10.9 Bitwise Operators
Operator Associativity Type

() [] . -> left to right Highest

+ - ++ -- ! & * ~ sizeof (type) right to left Unary

* / % left to right multiplicative

+ - left to right additive

<< >> left to right shifting

< <= > >= left to right relational

== != left to right equality

& left to right bitwise AND

^ left to right bitwise OR

| left to right bitwise OR

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= &= |= ^= <<= >>= %= right to left assignment

, left to right comma

Fig. 10.15 Operator precedence and associativity.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

39

10.10 Bit Fields

• Bit field
– Member of a structure whose size (in bits) has been specified

– Enable better memory utilization

– Must be defined as int or unsigned

– Cannot access individual bits

• Defining bit fields
– Follow unsigned or int member with a colon (:) and an

integer constant representing the width of the field

– Example:
struct BitCard {

unsigned face : 4;

unsigned suit : 2;

unsigned color : 1;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

40

10.10 Bit Fields

• Unnamed bit field

– Field used as padding in the structure

– Nothing may be stored in the bits

struct Example {

unsigned a : 13;

unsigned : 3;

unsigned b : 4;

}

– Unnamed bit field with zero width aligns next bit field to a

new storage unit boundary

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

41

fig10_16.c (1 of 3)

1 /* Fig. 10.16: fig10_16.c

2 Representing cards with bit fields in a struct */

3

4 #include <stdio.h>

5

6 /* bitCard structure definition with bit fields */

7 struct bitCard {

8 unsigned face : 4; /* 4 bits; 0-15 */

9 unsigned suit : 2; /* 2 bits; 0-3 */

10 unsigned color : 1; /* 1 bit; 0-1 */

11 }; /* end struct bitCard */

12

13 typedef struct bitCard Card;

14

15 void fillDeck(Card * const wDeck); /* prototype */

16 void deal(const Card * const wDeck); /* prototype */

17

18 int main()

19 {

20 Card deck[52]; /* create array of Cards */

21

22 fillDeck(deck);

23 deal(deck);

24

25 return 0; /* indicates successful termination */

26

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

42

fig10_16.c (2 of 3)

27 } /* end main */

28

29 /* initialize Cards */

30 void fillDeck(Card * const wDeck)

31 {

32 int i; /* counter */

33

34 /* loop through wDeck */

35 for (i = 0; i <= 51; i++) {

36 wDeck[i].face = i % 13;

37 wDeck[i].suit = i / 13;

38 wDeck[i].color = i / 26;

39 } /* end for */

40

41 } /* end function fillDeck */

42

43 /* output cards in two column format; cards 0-25 subscripted with

44 k1 (column 1); cards 26-51 subscripted k2 (column 2) */

45 void deal(const Card * const wDeck)

46 {

47 int k1; /* subscripts 0-25 */

48 int k2; /* subscripts 26-51 */

49

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

43

fig10_16.c (3 of 3)

50 /* loop through wDeck */

51 for (k1 = 0, k2 = k1 + 26; k1 <= 25; k1++, k2++) {

52 printf("Card:%3d Suit:%2d Color:%2d ",

53 wDeck[k1].face, wDeck[k1].suit, wDeck[k1].color);

54 printf("Card:%3d Suit:%2d Color:%2d\n",

55 wDeck[k2].face, wDeck[k2].suit, wDeck[k2].color);

56 } /* end for */

57

58 } /* end function deal */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

44

Program Output

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1

Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1

Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1

Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1

Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1

Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1

Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1

Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1

Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1

Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1

Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1

Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1

Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1

Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1

Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1

Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1

Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1

Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1

Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1

Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1

Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1

Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1

Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1

Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1

Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1

Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

45

10.11 Enumeration Constants

• Enumeration

– Set of integer constants represented by identifiers

– Enumeration constants are like symbolic constants whose

values are automatically set

• Values start at 0 and are incremented by 1

• Values can be set explicitly with =

• Need unique constant names

– Example:
enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL,

AUG, SEP, OCT, NOV, DEC};

• Creates a new type enum Months in which the identifiers are

set to the integers 1 to 12

– Enumeration variables can only assume their enumeration

constant values (not the integer representations)

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

46

fig10_18.c

1 /* Fig. 10.18: fig10_18.c

2 Using an enumeration type */

3 #include <stdio.h>

4

5 /* enumeration constants represent months of the year */

6 enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,

7 JUL, AUG, SEP, OCT, NOV, DEC };

8

9 int main()

10 {

11 enum months month; /* can contain any of the 12 months */

12

13 /* initialize array of pointers */

14 const char *monthName[] = { "", "January", "February", "March",

15 "April", "May", "June", "July", "August", "September", "October",

16 "November", "December" };

17

18 /* loop through months */

19 for (month = JAN; month <= DEC; month++) {

20 printf("%2d%11s\n", month, monthName[month]);

21 } /* end for */

22

23 return 0; /* indicates successful termination */

24 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

47

Program Output

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September

10 October

11 November

12 December

