
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

Chapter 11 – File Processing

Outline
11.1 Introduction

11.2 The Data Hierarchy

11.3 Files and Streams

11.4 Creating a Sequential Access File

11.5 Reading Data from a Sequential Access File

11.6 Random Access Files

11.7 Creating a Randomly Accessed File

11.8 Writing Data Randomly to a Randomly Accessed File

11.9 Reading Data Randomly from a Randomly Accessed File

11.10 Case Study: A Transaction-Processing Program

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Objectives

• In this chapter, you will learn:

– To be able to create, read, write and update files.

– To become familiar with sequential access file processing.

– To become familiar with random-access file processing.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

11.1 Introduction

• Data files

– Can be created, updated, and processed by C programs

– Are used for permanent storage of large amounts of data

• Storage of data in variables and arrays is only temporary

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

11.2 The Data Hierarchy

• Data Hierarchy:

– Bit – smallest data item

• Value of 0 or 1

– Byte – 8 bits

• Used to store a character

– Decimal digits, letters, and special symbols

– Field – group of characters conveying meaning

• Example: your name

– Record – group of related fields

• Represented by a struct or a class

• Example: In a payroll system, a record for a particular

employee that contained his/her identification number, name,

address, etc.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

11.2 The Data Hierarchy

• Data Hierarchy (continued):

– File – group of related records

• Example: payroll file

– Database – group of related files

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

11.2 The Data Hierarchy

• Data files

– Record key

• Identifies a record to facilitate the retrieval of specific records

from a file

– Sequential file

• Records typically sorted by key

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

11.3 Files and Streams

• C views each file as a sequence of bytes

– File ends with the end-of-file marker

• Or, file ends at a specified byte

• Stream created when a file is opened

– Provide communication channel between files and programs

– Opening a file returns a pointer to a FILE structure

• Example file pointers:

• stdin - standard input (keyboard)

• stdout - standard output (screen)

• stderr - standard error (screen)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

11.3 Files and Streams

• FILE structure

– File descriptor

• Index into operating system array called the open file table

– File Control Block (FCB)

• Found in every array element, system uses it to administer the

file

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

9

11.3 Files and Streams

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

10

11.3 Files and Streams

• Read/Write functions in standard library
– fgetc

• Reads one character from a file

• Takes a FILE pointer as an argument

• fgetc(stdin) equivalent to getchar()

– fputc

• Writes one character to a file

• Takes a FILE pointer and a character to write as an argument

• fputc('a', stdout) equivalent to putchar('a')

– fgets

• Reads a line from a file

– fputs

• Writes a line to a file

– fscanf / fprintf

• File processing equivalents of scanf and printf

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11

fig11_03.c (1 of 2)

1 /* Fig. 11.3: fig11_03.c

2 Create a sequential file */

3 #include <stdio.h>

4

5 int main()

6 {

7 int account; /* account number */

8 char name[30]; /* account name */

9 double balance; /* account balance */

10

11 FILE *cfPtr; /* cfPtr = clients.dat file pointer */

12

13 /* fopen opens file. Exit program if unable to create file */

14 if ((cfPtr = fopen("clients.dat", "w")) == NULL) {

15 printf("File could not be opened\n");

16 } /* end if */

17 else {

18 printf("Enter the account, name, and balance.\n");

19 printf("Enter EOF to end input.\n");

20 printf("? ");

21 scanf("%d%s%lf", &account, name, &balance);

22

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

fig11_03.c (2 of 2)

Program Output
Enter the account, name, and balance.

Enter EOF to end input.

? 100 Jones 24.98

? 200 Doe 345.67

? 300 White 0.00

? 400 Stone -42.16

? 500 Rich 224.62

? ^Z

23 /* write account, name and balance into file with fprintf */

24 while (!feof(stdin)) {

25 fprintf(cfPtr, "%d %s %.2f\n", account, name, balance);

26 printf("? ");

27 scanf("%d%s%lf", &account, name, &balance);

28 } /* end while */

29

30 fclose(cfPtr); /* fclose closes file */

31 } /* end else */

32

33 return 0; /* indicates successful termination */

34

35 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

11.4 Creating a Sequential Access File

• C imposes no file structure

– No notion of records in a file

– Programmer must provide file structure

• Creating a File
– FILE *cfPtr;

• Creates a FILE pointer called cfPtr

– cfPtr = fopen(“clients.dat", “w”);

• Function fopen returns a FILE pointer to file specified

• Takes two arguments – file to open and file open mode

• If open fails, NULL returned

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14

11.4 Creating a Sequential Access File

Computer system Key combination

UNIX systems <return> <ctrl> d

IBM PC and compatibles <ctrl> z

Macintosh <ctrl> d

Fig. 11.4 End-of-file key combinations for various popular computer systems.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15

11.4 Creating a Sequential Access File

– fprintf

• Used to print to a file

• Like printf, except first argument is a FILE pointer (pointer
to the file you want to print in)

– feof(FILE pointer)

• Returns true if end-of-file indicator (no more data to process) is
set for the specified file

– fclose(FILE pointer)

• Closes specified file

• Performed automatically when program ends

• Good practice to close files explicitly

• Details
– Programs may process no files, one file, or many files

– Each file must have a unique name and should have its own
pointer

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

16

11.4 Creating a Sequential Access File

Mode Description

r Open a file for reading.

w Create a file for writing. If the file already exists, discard the current contents.

a Append; open or create a file for writing at end of file.

r+ Open a file for update (reading and writing).

w+ Create a file for update. If the file already exists, discard the current contents.

a+ Append; open or create a file for update; writing is done at the end of the file.

rb Open a file for reading in binary mode.

wb Create a file for writing in binary mode. If the file already exists, discard the

current contents.

ab Append; open or create a file for writing at end of file in binary mode.

rb+ Open a file for update (reading and writing) in binary mode.

wb+ Create a file for update in binary mode. If the file already exists, discard the

current contents.

ab+ Append; open or create a file for update in binary mode; writing is done at the

end of the file.

Fig. 11.6 File open modes.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

17

11.5 Reading Data from a Sequential

Access File

• Reading a sequential access file

– Create a FILE pointer, link it to the file to read

cfPtr = fopen(“clients.dat", "r");

– Use fscanf to read from the file

• Like scanf, except first argument is a FILE pointer

fscanf(cfPtr, "%d%s%f", &accounnt, name, &balance);

– Data read from beginning to end

– File position pointer

• Indicates number of next byte to be read / written

• Not really a pointer, but an integer value (specifies byte

location)

• Also called byte offset

– rewind(cfPtr)

• Repositions file position pointer to beginning of file (byte 0)

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

18

fig11_07.c (1 of 2)

1 /* Fig. 11.7: fig11_07.c

2 Reading and printing a sequential file */

3 #include <stdio.h>

4

5 int main()

6 {

7 int account; /* account number */

8 char name[30]; /* account name */

9 double balance; /* account balance */

10

11 FILE *cfPtr; /* cfPtr = clients.dat file pointer */

12

13 /* fopen opens file; exits program if file cannot be opened */

14 if ((cfPtr = fopen("clients.dat", "r")) == NULL) {

15 printf("File could not be opened\n");

16 } /* end if */

17 else { /* read account, name and balance from file */

18 printf("%-10s%-13s%s\n", "Account", "Name", "Balance");

19 fscanf(cfPtr, "%d%s%lf", &account, name, &balance);

20

21 /* while not end of file */

22 while (!feof(cfPtr)) {

23 printf("%-10d%-13s%7.2f\n", account, name, balance);

24 fscanf(cfPtr, "%d%s%lf", &account, name, &balance);

25 } /* end while */

26

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19

fig11_07.c (2 of 2)

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

27 fclose(cfPtr); /* fclose closes the file */

28 } /* end else */

29

30 return 0; /* indicates successful termination */

31

32 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

20

fig11_08.c (1 of 5)

1 /* Fig. 11.8: fig11_08.c

2 Credit inquiry program */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int request; /* request number */

9 int account; /* account number */

10 double balance; /* account balance */

11 char name[30]; /* account name */

12 FILE *cfPtr; /* clients.dat file pointer */

13

14 /* fopen opens the file; exits program if file cannot be opened */

15 if ((cfPtr = fopen("clients.dat", "r")) == NULL) {

16 printf("File could not be opened\n");

17 } /* end if */

18 else {

19

20 /* display request options */

21 printf("Enter request\n"

22 " 1 - List accounts with zero balances\n"

23 " 2 - List accounts with credit balances\n"

24 " 3 - List accounts with debit balances\n"

25 " 4 - End of run\n? ");

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21

fig11_08.c (2 of 5)

26 scanf("%d", &request);

27

28 /* process user's request */

29 while (request != 4) {

30

31 /* read account, name and balance from file */

32 fscanf(cfPtr, "%d%s%lf", &account, name, &balance);

33

34 switch (request) {

35

36 case 1:

37 printf("\nAccounts with zero balances:\n");

38

39 /* read file contents (until eof) */

40 while (!feof(cfPtr)) {

41

42 if (balance == 0) {

43 printf("%-10d%-13s%7.2f\n",

44 account, name, balance);

45 } /* end if */

46

47 /* read account, name and balance from file */

48 fscanf(cfPtr, "%d%s%lf",

49 &account, name, &balance);

50 } /* end while */

51

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22

fig11_08.c (3 of 5)

52 break;

53

54 case 2:

55 printf("\nAccounts with credit balances:\n");

56

57 /* read file contents (until eof) */

58 while (!feof(cfPtr)) {

59

60 if (balance < 0) {

61 printf("%-10d%-13s%7.2f\n",

62 account, name, balance);

63 } /* end if */

64

65 /* read account, name and balance from file */

66 fscanf(cfPtr, "%d%s%lf",

67 &account, name, &balance);

68 } /* end while */

69

70 break;

71

72 case 3:

73 printf("\nAccounts with debit balances:\n");

74

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23

fig11_08.c (4 of 5)

75 /* read file contents (until eof) */

76 while (!feof(cfPtr)) {

77

78 if (balance > 0) {

79 printf("%-10d%-13s%7.2f\n",

80 account, name, balance);

81 } /* end if */

82

83 /* read account, name and balance from file */

84 fscanf(cfPtr, "%d%s%lf",

85 &account, name, &balance);

86 } /* end while */

87

88 break;

89

90 } /* end switch */

91

92 rewind(cfPtr); /* return cfPtr to beginning of file */

93

94 printf("\n? ");

95 scanf("%d", &request);

96 } /* end while */

97

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

fig11_08.c (5 of 5)

Program Output
Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances

3 - List accounts with debit balances

4 - End of run

? 1

Accounts with zero balances:

300 White 0.00

? 2

Accounts with credit balances:

400 Stone -42.16

? 3

Accounts with debit balances:

100 Jones 24.98

200 Doe 345.67

500 Rich 224.62

? 4

End of run.

98 printf("End of run.\n");

99 fclose(cfPtr); /* fclose closes the file */

100 } /* end else */

101

102 return 0; /* indicates successful termination */

103

104 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

11.5 Reading Data from a Sequential

Access File

• Sequential access file

– Cannot be modified without the risk of destroying other data

– Fields can vary in size

• Different representation in files and screen than internal

representation

• 1, 34, -890 are all ints, but have different sizes on disk

300 White 0.00 400 Jones 32.87 (old data in file)

If we want to change White's name to Worthington,

300 White 0.00 400 Jones 32.87

300 Worthington 0.00ones 32.87

300 Worthington 0.00

Data gets overwritten

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

11.6 Random-Access Files

• Random access files

– Access individual records without searching through other records

– Instant access to records in a file

– Data can be inserted without destroying other data

– Data previously stored can be updated or deleted without overwriting

• Implemented using fixed length records

– Sequential files do not have fixed length records

0 200 300 400 500

byte offsets}

} } } } } }

100

100

bytes

100

bytes

100

bytes

100

bytes

100

bytes

100

bytes

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27

11.7 Creating a Randomly Accessed File

• Data in random access files

– Unformatted (stored as "raw bytes")

• All data of the same type (ints, for example) uses the same

amount of memory

• All records of the same type have a fixed length

• Data not human readable

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

11.7 Creating a Randomly Accessed File

• Unformatted I/O functions
– fwrite

• Transfer bytes from a location in memory to a file

– fread

• Transfer bytes from a file to a location in memory

– Example:

fwrite(&number, sizeof(int), 1, myPtr);

• &number – Location to transfer bytes from

• sizeof(int) – Number of bytes to transfer

• 1 – For arrays, number of elements to transfer

– In this case, "one element" of an array is being transferred

• myPtr – File to transfer to or from

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

29

11.7 Creating a Randomly Accessed File

• Writing structs
fwrite(&myObject, sizeof (struct myStruct), 1,

myPtr);

– sizeof – returns size in bytes of object in parentheses

• To write several array elements

– Pointer to array as first argument

– Number of elements to write as third argument

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

30

fig11_11.c (1 of 2)

1 /* Fig. 11.11: fig11_11.c

2 Creating a randomly accessed file sequentially */

3 #include <stdio.h>

4

5 /* clientData structure definition */

6 struct clientData {

7 int acctNum; /* account number */

8 char lastName[15]; /* account last name */

9 char firstName[10]; /* account first name */

10 double balance; /* account balance */

11 }; /* end structure clientData */

12

13 int main()

14 {

15 int i; /* counter */

16

17 /* create clientData with no information */

18 struct clientData blankClient = { 0, "", "", 0.0 };

19

20 FILE *cfPtr; /* credit.dat file pointer */

21

22 /* fopen opens the file; exits if file cannot be opened */

23 if ((cfPtr = fopen("credit.dat", "wb")) == NULL) {

24 printf("File could not be opened.\n");

25 } /* end if */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

31

fig11_11.c (2 of 2)

26 else {

27

28 /* output 100 blank records to file */

29 for (i = 1; i <= 100; i++) {

30 fwrite(&blankClient, sizeof(struct clientData), 1, cfPtr);

31 } /* end for */

32

33 fclose (cfPtr); /* fclose closes the file */

34 } /* end else */

35

36 return 0; /* indicates successful termination */

37

38 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

32

11.8 Writing Data Randomly to a Randomly

Accessed File

• fseek

– Sets file position pointer to a specific position

– fseek(pointer, offset, symbolic_constant);

• pointer – pointer to file

• offset – file position pointer (0 is first location)

• symbolic_constant – specifies where in file we are reading from

• SEEK_SET – seek starts at beginning of file

• SEEK_CUR – seek starts at current location in file

• SEEK_END – seek starts at end of file

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

33

fig11_12.c (1 of 3)

1 /* Fig. 11.12: fig11_12.c

2 Writing to a random access file */

3 #include <stdio.h>

4

5 /* clientData structure definition */

6 struct clientData {

7 int acctNum; /* account number */

8 char lastName[15]; /* account last name */

9 char firstName[10]; /* account first name */

10 double balance; /* account balance */

11 }; /* end structure clientData */

12

13 int main()

14 {

15 FILE *cfPtr; /* credit.dat file pointer */

16

17 /* create clientData with no information */

18 struct clientData client = { 0, "", "", 0.0 };

19

20 /* fopen opens the file; exits if file cannot be opened */

21 if ((cfPtr = fopen("credit.dat", "rb+")) == NULL) {

22 printf("File could not be opened.\n");

23 } /* end if */

24 else {

25

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

34

fig11_12.c (2 of 3)

26 /* require user to specify account number */

27 printf("Enter account number"

28 " (1 to 100, 0 to end input)\n? ");

29 scanf("%d", &client.acctNum);

30

31 /* user enters information, which is copied into file */

32 while (client.acctNum != 0) {

33

34 /* user enters last name, first name and balance */

35 printf("Enter lastname, firstname, balance\n? ");

36

37 /* set record lastName, firstName and balance value */

38 fscanf(stdin, "%s%s%lf", client.lastName,

39 client.firstName, &client.balance);

40

41 /* seek position in file of user-specified record */

42 fseek(cfPtr, (client.acctNum - 1) *

43 sizeof(struct clientData), SEEK_SET);

44

45 /* write user-specified information in file */

46 fwrite(&client, sizeof(struct clientData), 1, cfPtr);

47

48 /* enable user to specify another account number */

49 printf("Enter account number\n? ");

50 scanf("%d", &client.acctNum);

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

35

fig11_12.c (3 of 3)

Program OutputEnter account number (1 to 100, 0 to end input)
? 37
Enter lastname, firstname, balance
? Barker Doug 0.00
Enter account number
? 29
Enter lastname, firstname, balance
? Brown Nancy -24.54
Enter account number
? 96
Enter lastname, firstname, balance
? Stone Sam 34.98
Enter account number
? 88
Enter lastname, firstname, balance
? Smith Dave 258.34
Enter account number
? 33
Enter lastname, firstname, balance
? Dunn Stacey 314.33
Enter account number
? 0

51 } /* end while */

52

53 fclose(cfPtr); /* fclose closes the file */

54 } /* end else */

55

56 return 0; /* indicates successful termination */

57

58 } /* end main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

36

11.8 Writing Data Randomly to a Randomly

Accessed File

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

37

11.9 Reading Data Randomly from a

Randomly Accessed File

• fread

– Reads a specified number of bytes from a file into memory

fread(&client, sizeof (struct clientData), 1,
myPtr);

– Can read several fixed-size array elements

• Provide pointer to array

• Indicate number of elements to read

– To read multiple elements, specify in third argument

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

38

fig11_15.c (1 of 2)

1 /* Fig. 11.15: fig11_15.c

2 Reading a random access file sequentially */

3 #include <stdio.h>

4

5 /* clientData structure definition */

6 struct clientData {

7 int acctNum; /* account number */

8 char lastName[15]; /* account last name */

9 char firstName[10]; /* account first name */

10 double balance; /* account balance */

11 }; /* end structure clientData */

12

13 int main()

14 {

15 FILE *cfPtr; /* credit.dat file pointer */

16

17 /* create clientData with no information */

18 struct clientData client = { 0, "", "", 0.0 };

19

20 /* fopen opens the file; exits if file cannot be opened */

21 if ((cfPtr = fopen("credit.dat", "rb")) == NULL) {

22 printf("File could not be opened.\n");

23 } /* end if */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

39

fig11_15.c (2 of 2)

24 else {

25 printf("%-6s%-16s%-11s%10s\n", "Acct", "Last Name",

26 "First Name", "Balance");

27

28 /* read all records from file (until eof) */

29 while (!feof(cfPtr)) {

30 fread(&client, sizeof(struct clientData), 1, cfPtr);

31

32 /* display record */

33 if (client.acctNum != 0) {

34 printf("%-6d%-16s%-11s%10.2f\n",

35 client.acctNum, client.lastName,

36 client.firstName, client.balance);

37 } /* end if */

38

39 } /* end while */

40

41 fclose(cfPtr); /* fclose closes the file */

42 } /* end else */

43

44 return 0; /* indicates successful termination */

45

46 } /* end main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

40

Program Output

Acct Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

41

11.10 Case Study: A Transaction

Processing Program

• This program

– Demonstrates using random access files to achieve instant

access processing of a bank’s account information

• We will

– Update existing accounts

– Add new accounts

– Delete accounts

– Store a formatted listing of all accounts in a text file

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

42

fig11_16.c (1 of 11)

1 /* Fig. 11.16: fig11_16.c

2 This program reads a random access file sequentially, updates data

3 already written to the file, creates new data to be placed in the

4 file, and deletes data previously in the file. */

5 #include <stdio.h>

6

7 /* clientData structure definition */

8 struct clientData {

9 int acctNum; /* account number */

10 char lastName[15]; /* account last name */

11 char firstName[10]; /* account first name */

12 double balance; /* account balance */

13 }; /* end structure clientData */

14

15 /* prototypes */

16 int enterChoice(void);

17 void textFile(FILE *readPtr);

18 void updateRecord(FILE *fPtr);

19 void newRecord(FILE *fPtr);

20 void deleteRecord(FILE *fPtr);

21

22 int main()

23 {

24 FILE *cfPtr; /* credit.dat file pointer */

25 int choice; /* user's choice */

26

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

43

fig11_16.c (2 of 11)

27 /* fopen opens the file; exits if file cannot be opened */

28 if ((cfPtr = fopen("credit.dat", "rb+")) == NULL) {

29 printf("File could not be opened.\n");

30 } /* end if */

31 else {

32

33 /* enable user to specify action */

34 while ((choice = enterChoice()) != 5) {

35

36 switch (choice) {

37

38 /* create text file from record file */

39 case 1:

40 textFile(cfPtr);

41 break;

42

43 /* update record */

44 case 2:

45 updateRecord(cfPtr);

46 break;

47

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

44

fig11_16.c (3 of 11)

48 /* create record */

49 case 3:

50 newRecord(cfPtr);

51 break;

52

53 /* delete existing record */

54 case 4:

55 deleteRecord(cfPtr);

56 break;

57

58 /* display message if user does not select valid choice */

59 default:

60 printf("Incorrect choice\n");

61 break;

62

63 } /* end switch */

64

65 } /* end while */

66

67 fclose(cfPtr); /* fclose closes the file */

68 } /* end else */

69

70 return 0; /* indicates successful termination */

71

72 } /* end main */

73

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

45

fig11_16.c (4 of 11)

74 /* create formatted text file for printing */

75 void textFile(FILE *readPtr)

76 {

77 FILE *writePtr; /* accounts.txt file pointer */

78

79 /* create clientData with no information */

80 struct clientData client = { 0, "", "", 0.0 };

81

82 /* fopen opens the file; exits if file cannot be opened */

83 if ((writePtr = fopen("accounts.txt", "w")) == NULL) {

84 printf("File could not be opened.\n");

85 } /* end if */

86 else {

87 rewind(readPtr); /* sets pointer to beginning of record file */

88 fprintf(writePtr, "%-6s%-16s%-11s%10s\n",

89 "Acct", "Last Name", "First Name","Balance");

90

91 /* copy all records from record file into text file */

92 while (!feof(readPtr)) {

93 fread(&client, sizeof(struct clientData), 1, readPtr);

94

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

46

fig11_16.c (5 of 11)

95 /* write single record to text file */

96 if (client.acctNum != 0) {

97 fprintf(writePtr, "%-6d%-16s%-11s%10.2f\n",

98 client.acctNum, client.lastName,

99 client.firstName, client.balance);

100 } /* end if */

101

102 } /* end while */

103

104 fclose(writePtr); /* fclose closes the file */

105 } /* end else */

106

107 } /* end function textFile */

108

109 /* update balance in record */

110 void updateRecord(FILE *fPtr)

111 {

112 int account; /* account number */

113 double transaction; /* account transaction */

114

115 /* create clientData with no information */

116 struct clientData client = { 0, "", "", 0.0 };

117

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

47

fig11_16.c (6 of 11)

118 /* obtain number of account to update */

119 printf("Enter account to update (1 - 100): ");

120 scanf("%d", &account);

121

122 /* move file pointer to correct record in file */

123 fseek(fPtr, (account - 1) * sizeof(struct clientData),

124 SEEK_SET);

125

126 /* read record from file */

127 fread(&client, sizeof(struct clientData), 1, fPtr);

128

129 /* display error if account does not exist */

130 if (client.acctNum == 0) {

131 printf("Acount #%d has no information.\n", account);

132 } /* end if */

133 else { /* update record */

134 printf("%-6d%-16s%-11s%10.2f\n\n",

135 client.acctNum, client.lastName,

136 client.firstName, client.balance);

137

138 /* request user to specify transaction */

139 printf("Enter charge (+) or payment (-): ");

140 scanf("%lf", &transaction);

141 client.balance += transaction; /* update record balance */

142

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

48

fig11_16.c (7 of 11)

143 printf("%-6d%-16s%-11s%10.2f\n",

144 client.acctNum, client.lastName,

145 client.firstName, client.balance);

146

147 /* move file pointer to correct record in file */

148 fseek(fPtr, (account - 1) * sizeof(struct clientData),

149 SEEK_SET);

150

151 /* write updated record over old record in file */

152 fwrite(&client, sizeof(struct clientData), 1, fPtr);

153 } /* end else */

154

155 } /* end function updateRecord */

156

157 /* delete an existing record */

158 void deleteRecord(FILE *fPtr)

159 {

160 /* create two clientDatas and initialize blankClient */

161 struct clientData client;

162 struct clientData blankClient = { 0, "", "", 0 };

163

164 int accountNum; /* account number */

165

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

49

fig11_16.c (8 of 11)

166 /* obtain number of account to delete */

167 printf("Enter account number to delete (1 - 100): ");

168 scanf("%d", &accountNum);

169

170 /* move file pointer to correct record in file */

171 fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),

172 SEEK_SET);

173

174 /* read record from file */

175 fread(&client, sizeof(struct clientData), 1, fPtr);

176

177 /* display error if record does not exist */

178 if (client.acctNum == 0) {

179 printf("Account %d does not exist.\n", accountNum);

180 } /* end if */

181 else { /* delete record */

182

183 /* move file pointer to correct record in file */

184 fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),

185 SEEK_SET);

186

187 /* replace existing record with blank record */

188 fwrite(&blankClient,

189 sizeof(struct clientData), 1, fPtr);

190 } /* end else */

191

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

50

fig11_16.c (9 of 11)

192 } /* end function deleteRecord */

193

194 /* create and insert record */

195 void newRecord(FILE *fPtr)

196 {

197 /* create clientData with no information */

198 struct clientData client = { 0, "", "", 0.0 };

199

200 int accountNum; /* account number */

201

202 /* obtain number of account to create */

203 printf("Enter new account number (1 - 100): ");

204 scanf("%d", &accountNum);

205

206 /* move file pointer to correct record in file */

207 fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),

208 SEEK_SET);

209

210 /* read record from file */

211 fread(&client, sizeof(struct clientData), 1, fPtr);

212

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

51

fig11_16.c (10 of 11)

213 /* display error if account previously exists */

214 if (client.acctNum != 0) {

215 printf("Account #%d already contains information.\n",

216 client.acctNum);

217 } /* end if */

218 else { /* create record */

219

220 /* user enters last name, first name and balance */

221 printf("Enter lastname, firstname, balance\n? ");

222 scanf("%s%s%lf", &client.lastName, &client.firstName,

223 &client.balance);

224

225 client.acctNum = accountNum;

226

227 /* move file pointer to correct record in file */

228 fseek(fPtr, (client.acctNum - 1) *

229 sizeof(struct clientData), SEEK_SET);

230

231 /* insert record in file */

232 fwrite(&client,

233 sizeof(struct clientData), 1, fPtr);

234 } /* end else */

235

236 } /* end function newRecord */

237

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

52

fig11_16.c (11 of 11)

238 /* enable user to input menu choice */

239 int enterChoice(void)

240 {

241 int menuChoice; /* variable to store user's choice */

242

243 /* display available options */

244 printf("\nEnter your choice\n"

245 "1 - store a formatted text file of acounts called\n"

246 " \"accounts.txt\" for printing\n"

247 "2 - update an account\n"

248 "3 - add a new account\n"

249 "4 - delete an account\n"

250 "5 - end program\n? ");

251

252 scanf("%d", &menuChoice); /* receive choice from user */

253

254 return menuChoice;

255

256 } /* end function enterChoice */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

53

Program Output

After choosing option 2 accounts.txt contains:

Enter account to update (1 - 100): 37

37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99

37 Barker Doug 87.99

After choosing option 3 accounts.txt contains:

Enter new account number (1 - 100): 22

Enter lastname, firstname, balance

? Johnston Sarah 247.45

After choosing option 1 accounts.txt contains:

Acct Last Name First Name Balance

29 Brown Nancy -24.54

33 Dunn Stacey 314.33

37 Barker Doug 0.00

88 Smith Dave 258.34

96 Stone Sam 34.98

