
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Chapter 13 - The Preprocessor

Outline
13.1 Introduction

13.2 The #include Preprocessor Directive

13.3 The #define Preprocessor Directive: Symbolic Constants

13.4 The #define Preprocessor Directive: Macros

13.5 Conditional Compilation

13.6 The #error and #pragma Preprocessor Directives

13.7 The # and ## Operators

13.8 Line Numbers

13.9 Predefined Symbolic Constants

13.10 Assertions

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

• In this chapter, you will learn:

– To be able to use #include for developing large

programs.

– To be able to use #define to create macros and macros

with arguments.

– To understand conditional compilation.

– To be able to display error messages during conditional

compilation.

– To be able to use assertions to test if the values of

expressions are correct.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.1 Introduction

• Preprocessing

– Occurs before a program is compiled

– Inclusion of other files

– Definition of symbolic constants and macros

– Conditional compilation of program code

– Conditional execution of preprocessor directives

• Format of preprocessor directives

– Lines begin with #

– Only whitespace characters before directives on a line

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.2 The #include Preprocessor Directive

• #include

– Copy of a specified file included in place of the directive

– #include <filename>

• Searches standard library for file

• Use for standard library files

– #include "filename"

• Searches current directory, then standard library

• Use for user-defined files

– Used for:

• Programs with multiple source files to be compiled together

• Header file – has common declarations and definitions

(classes, structures, function prototypes)

– #include statement in each file

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.3 The #define Preprocessor Directive:

Symbolic Constants
• #define

– Preprocessor directive used to create symbolic constants and
macros

– Symbolic constants

• When program compiled, all occurrences of symbolic constant
replaced with replacement text

– Format

#define identifier replacement-text

– Example:

#define PI 3.14159

– Everything to right of identifier replaces text

#define PI = 3.14159

• Replaces “PI” with "= 3.14159"

– Cannot redefine symbolic constants once they have been
created

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.4 The #define Preprocessor Directive:

Macros

• Macro

– Operation defined in #define

– A macro without arguments is treated like a symbolic constant

– A macro with arguments has its arguments substituted for

replacement text, when the macro is expanded

– Performs a text substitution – no data type checking

– The macro

#define CIRCLE_AREA(x) (PI * (x) * (x))

would cause

area = CIRCLE_AREA(4);

to become

area = (3.14159 * (4) * (4));

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.4 The #define Preprocessor Directive:

Macros

• Use parenthesis

– Without them the macro

#define CIRCLE_AREA(x) PI * (x) * (x)

would cause

area = CIRCLE_AREA(c + 2);

to become

area = 3.14159 * c + 2 * c + 2;

• Multiple arguments
#define RECTANGLE_AREA(x, y) ((x) * (y))

would cause

rectArea = RECTANGLE_AREA(a + 4, b + 7);

to become

rectArea = ((a + 4) * (b + 7));

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.4 The #define Preprocessor Directive:

Macros

• #undef

– Undefines a symbolic constant or macro

– If a symbolic constant or macro has been undefined it can

later be redefined

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.5 Conditional Compilation

• Conditional compilation

– Control preprocessor directives and compilation

– Cast expressions, sizeof, enumeration constants cannot be

evaluated in preprocessor directives

– Structure similar to if

#if !defined(NULL)

#define NULL 0

#endif

• Determines if symbolic constant NULL has been defined

– If NULL is defined, defined(NULL) evaluates to 1

– If NULL is not defined, this function defines NULL to be 0

– Every #if must end with #endif

– #ifdef short for #if defined(name)

– #ifndef short for #if !defined(name)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.5 Conditional Compilation

• Other statements

– #elif – equivalent of else if in an if statement

– #else – equivalent of else in an if statement

• "Comment out" code

– Cannot use /* ... */

– Use

#if 0

code commented out

#endif

– To enable code, change 0 to 1

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.5 Conditional Compilation

• Debugging
#define DEBUG 1

#ifdef DEBUG
cerr << "Variable x = " << x << endl;

#endif

– Defining DEBUG to 1 enables code

– After code corrected, remove #define statement

– Debugging statements are now ignored

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.6 The #error and #pragma
Preprocessor Directives

• #error tokens

– Tokens are sequences of characters separated by spaces

• "I like C++" has 3 tokens

– Displays a message including the specified tokens as an

error message

– Stops preprocessing and prevents program compilation

• #pragma tokens

– Implementation defined action (consult compiler

documentation)

– Pragmas not recognized by compiler are ignored

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.7 The # and ## Operators

• #

– Causes a replacement text token to be converted to a string

surrounded by quotes

– The statement

#define HELLO(x) printf(“Hello, ” #x “\n”);

would cause

HELLO(John)

to become

printf(“Hello, ” “John” “\n”);

– Strings separated by whitespace are concatenated when using
printf

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.7 The # and ## Operators

• ##

– Concatenates two tokens

– The statement

#define TOKENCONCAT(x, y) x ## y

would cause

TOKENCONCAT(O, K)

to become

OK

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.8 Line Numbers

• #line

– Renumbers subsequent code lines, starting with integer value

– File name can be included

– #line 100 "myFile.c"

• Lines are numbered from 100 beginning with next source code

file

• Compiler messages will think that the error occurred in
"myfile.C"

• Makes errors more meaningful

• Line numbers do not appear in source file

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.9 Predefined Symbolic Constants

• Four predefined symbolic constants

– Cannot be used in #define or #undef

Symbolic c onstant Desc rip tion

__LINE__ The line number of the current source code line (an

integer constant).

__FILE__ The presumed name of the source file (a string).

__DATE__ The date the source file is compiled (a string of the

form "Mmm dd yyyy" such as "Jan 19 2001").

__TIME__ The time the source file is compiled (a string literal of

the form "hh:mm:ss").

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13.10 Assertions

• assert macro

– Header <assert.h>

– Tests value of an expression

– If 0 (false) prints error message and calls abort

– Example:

assert(x <= 10);

– If NDEBUG is defined

• All subsequent assert statements ignored

#define NDEBUG

