Chapter 14 - Advanced C Topics

Outline

14.1 Introduction

14.2 Redirecting Input/Output on UNIX and DOS Systems
14.3 Variable-Length Argument Lists

14.4 Using Command-Line Arguments

14.5 Notes on Compiling Multiple-Source-File Programs
14.6 Program Termination with exitand atexit

14.7 The volatile Type Qualifier

14.8 Suffixes for Integer and Floating-Point Constants
14.9 More on Files

14.10 Signal Handling

14.11 Dynamic Memory Allocation with calloc and realloc
14.12 The Unconditional Branch: goto

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

* In this chapter, you will learn:

To be able to redirect keyboard input to come from a file.
To be able to redirect screen output to be placed in a file.

To be able to write functions that use variable-length
argument lists.

To be able to process command-line arguments.

To be able to assign specific types to numeric constants
To be able to use temporary files.

To be able to process unexpected events within a program.
To be able to allocate memory dynamically for arrays.

To be able to change the size of memory that was
dynamically allocated previously.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.1 Introduction

 Several advanced topics in this chapter

» QOperating system specific
— Usually UNIX or DOS

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.2 Redirecting Input/Output on UNIX
and DOS Systems

 Standard I/O - keyboard and screen
— Redirect input and output

* Redirect symbol(<)
— Operating system feature, not a C feature
— UNIX and DOS
— $ or % represents command line

— Example:
$ sum < input

— Rather than inputting values by hand, read them from a file

* Pipe command(|)

— Output of one program becomes input of another
$ random | sum

— Output of random goes to sum

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.2 Redirecting Input/Output on UNIX
and DOS Systems

 Redirect output (>)
— Determines where output of a program goes

— Example:
$ random > out

« QOutput goes into out (erases previous contents)

« Append output (>>)
— Add output to end of file (preserve previous contents)

— Example:
$ random >> out

« QOutput is added onto the end of out

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.3 Variable-Length Argument Lists

 Functions with unspecified number of arguments

Load <stdarg.h>
Use ellipsis(. . .) at end of parameter list
Need at least one defined parameter

Example:
double myfunction (int i, ...);

The ellipsis is only used in the prototype of a function with a
variable length argument list

printf is an example of a function that can take multiple
arguments

The prototype of printf is defined as
int printf(const char* format, ...);

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.3 Variable-Length Argument Lists

Identifier Explanation

va_list A type suitable for holding information needed by macros va_start, va_arg and va_end. To
access the arguments in a variable-length argument list, an object of type va_11ist must be
declared.

va_start A macro that is invoked before the arguments of a variable-length argument list can be
accessed. The macro initializes the object declared with va_11ist for use by the va_arg and
va_end macros.

va_arg A macro that expands to an expression of the value and type of the next argument in the
variable-length argument list. Each invocation of va_arg modifies the object declared with
va_Tlist so that the object points to the next argument in the list.

va_end A macro that facilitates a normal return from a function whose variable-length argument list
was referred to by the va_start macro.

Fig. 14.1 The type and the macros defined in header stdarg. h.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

© 00 N o o B~ W N P

NN NN NDNEEPR P B B P PR P
O B W N P O © © N © 00 M W N L O

26

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

/* Fig. 14.2: figl4_02.c

Using variable-length argument lists */
#include <stdio.h>
#include <stdarg.h>

double average(int i, ...); /* prototype */

int main()

{
double w = 37.5; /* initialize w */
double x = 22.5; /* initialize x */
double y = 1.7; /* initialize y */
double z = 10.2; /* initialize z */

printf("%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n",
IIW = II’ w’ IIX = ll’ X’ I|y = II’ y’ IIZ =
printf("%s%.3f\n%s%.3f\n%s%.3f\n",

"The average of w and x is

y Z)5

, average(2, w, X),

"The average of w, x, and y is ", average(3, w, X, V¥),

"The average of w, x, y, and z is ",

average(4, w, X, Yy, z));

return 0; /* indicates successful termination */

} /* end main */

A Outline

\'%

figld 02.c (Part 1
of 2)

27 /* calculate average */

28 double average(int i, ...)

29 {

30 double total = 0; /* initialize total */

31 int j; /* counter */

32 va_list ap; /* for storing information needed by va_start */
88

34 va_start(ap, i); /* initialize ap for use 1in va_arg and va_end */
35

36 /¥ process variable length argument 1list */

37 for (j=1; j<=1; j++) {

38 total += va_arg(ap, double);

39 } /* end for */

40

41 va_end(C ap); /* end the va_start */

42

43 return total / i; /* calculate average */

44

45 } /* end function average */

N X =
I

The

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

= 37.5

22.5
1.7

= 10.2

average of w and x is 30.000
average of w, x, and y is 20.567
average of w, x, y, and z is 17.975

A
v

figld 02.c (Part 2 of
2)

QOutline

Program Output

14.4 Using Command-Line Arguments

« Pass arguments to main on DOS or UNIX

— Define main as
int main(int argc, char *argv[])
- int argc
« Number of arguments passed
- char *argv[]
 Array of strings
« Has names of arguments in order
—argv[0] is firstargument
— Example: $ mycopy input output
e argc: 3
e argvl 0]: “mycopy"”
e argvl 1]: "input”

e argv[2]: "output”
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

/* Fig. 14.3: figl4_03.c
Using command-Tine arguments */

#include <stdio.h>

Notice argc and
argv[] inmain

A QOutline

{
FILE *inFilePtr; /* input file pointer */

1

2

S

4

5 1dint main(int argc, char *argv[])

6

7

8 FILE *outFilePtr; /* output file pointer */
9

\'%

figl4 03.c (Part 1
of 2)

argv[1] is the second
argument, and is being read.

argv[2] is the third
argument, and is being
written to.

Loop until End of File. fgetc a character from

int c; /* define c to hold characters input by user */
10
11 /* check number of command-1line arguments */
12 if Cargc '= 3) {
13 printf("Usage: copy infile outfile\n");
14 } /*¥ end if */
15 else {
16
17 /* if input file can be opened */
18 if C (inFilePtr = fopen(argv[1 1, "r")) != nNuLL) {
19
20 /* if output file can be opened */
21 if ((outFilePtr = fopen(C argv[2], "w")) != nuLL) {
22
23 /* read and output characters */
24 while ((¢ = fgetc(C inFilePtr)) != EOF) {
25 fputc(c, outFilePtr);
26 } /* end while */
27
28 } /* end if */

inFilePtr and fputc it into outFilePtr.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

29
30
31
32
33
34
35
36
37
38
39
40
41
42

else { /* output file could not be opened */
printf("File \"%s\" could not be opened\n", argv[2]);
} /* end else */

} /* end if */
else { /* input file could not be opened */
printf("File \"%s\" could not be opened\n", argv[1 1]);
} /* end else */
} /* end else */

return 0; /* indicates successful termination */

} /* end main */

A

\'%

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

QOutline

figl4 03.c (Part 2 of
2)

14.5 Notes on Compiling Multiple-Source-
File Programs

» Programs with multiple source files
— Function definition must be in one file (cannot be split up)

— Global variables accessible to functions in same file

 Global variables must be defined in every file in which they
are used

— Example:
* |If integer f1ag is defined in one file

 To use it in another file you must include the statement
extern int flag;
- extern

 States that the variable is defined in another file

— Function prototypes can be used in other files without an
extern statement

« Have a prototype in each file that uses the function
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.5 Notes on Compiling Multiple-Source-
File Programs

« Keyword static

— Specifies that variables can only be used in the file in which
they are defined

» Programs with multiple source files

— Tedious to compile everything if small changes have been
made to only one file

— Can recompile only the changed files

— Procedure varies on system
« UNIX: make utility

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.6 Program Termination with exit and
atexit

e Functionexit
— [Forces a program to terminate

— Parameters — symbolic constants EXIT_SUCCESS or
EXIT_FAILURE

— Returns an implementation-defined value
— Example:
exit(EXIT_SUCCESS);

* Function atexit
atexit(functionToRun);
— Registers functionToRun to execute upon successful program
termination
« atexit itself does not terminate the program
— Register up to 32 functions (multiple atexit () statements)
 Functions called in reverse register order

— Called function cannot take arguments or return values
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

© 00 N O 0o b WDN PP

10

12
13
14
15
16
17
18
19
20
21
22
23
24

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

/* Fig. 14.4: figl4_04.c

Using the exit and atexit functions */
#include <stdio.h>
#include <stdlib.h>

void print(void); /* prototype */

int mainQ

{

int answer; /* user's menu choice */

atexit(print); /* register function print */

printf("Enter 1 to terminate program with function exit"
"\nEnter 2 to terminate program normally\n");

scanf("%d", &answer);

/¥ exit if answer is 1 */

if (answer == 1) {
printf("\nTerminating program with function exit\n");
exit(EXIT_SUCCESS);

} /* end if */

printf("\nTerminating program by reaching the end of main\n");

A QOutline
\%

figl4 04.c (Part 1 of
2)

25 return 0; /* indicates successful termination */

26

27 } /* end main */

28

29 /* display message before termination */
30 void print(void)

31 {
32 printf("Executing function print at program "
33 "termination\nProgram terminated\n");

34 } /* end function print */

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1

Terminating program with function exit
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Outline
\%

figl4 04.c (Part 2 of
2)

Program Output

14.7 The volatile Type Qualifier

« volatile qualifier
— Variable may be altered outside program
— Variable not under control of program
— Variable cannot be optimized

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.8 Suffixes for Integer and Floating-Point
Constants

» C provides suffixes for constants
— unsigned integer —u or U
- longinteger — 1 or L
— unsigned long integer — ul, Tu, UL or LU
- float—forF
- long double—1orL

— Examples:
174u
467L
3451ul

— If integer constant is not suffixed type determined by first
type capable of storing a value of that size (int, Tong 1int,
unsigned Tong 1int)

© Copyrig_ht 1&3:21:2'09&1%/' Qegel%qé\is&giart]eso,tnc§ gn-I;fFie?érgocnl EQ[I:aEyrn r% g Q?ll'glgps-!?gerved.
<>

14.9 More on Files

« C can process binary files
— Not all systems support binary files
 Files opened as text files if binary mode not supported

— Binary files should be used when rigorous speed, storage,
and compatibility conditions demand it

— Otherwise, text files are preferred
* Inherent portability, can use standard tools to examine data

 Function tmpfile
— Opens a temporary file in mode "wb+"
« Some systems may process temporary files as text files

— Temporary file exists until closed with fclose or until
program terminates

 Function rewind

— Positions file pointers to the beginning of the file
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.9 More on Files

 File open modes:

Mode Description

rb Open a binary file for reading.

wb Create a binary file for writing. If the file already exists, discard the current contents.
ab Append; open or create a binary file for writing at end-of-file.

rb+ Open a binary file for update (reading and writing).

wh-+ Create a binary file for update. If the file already exists, discard the current contents.
ab+ Append; open or create a binary file for update; all writing is done at the end of the file

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

/* Fig. 14.6: figl4_06.c

Using temporary files */

#include <stdio.h>

int mainQ)

{

FILE *filePtr; /* pointer to file being modified */

FILE *tempFilePtr; /* temporary file pointer */

int c; /* define c to hold characters input by user */

char fileName[30]; /* create char array */

printf("This program changes tabs to spaces.\n"
"Enter a file to be modified: ");
scanf("%29s", fileName);

/* fopen opes the file */
if ((filePtr = fopen(fileName, "r+")) I= NULL) {

/* create temporary file */
if ((tempFilePtr = tmpfile()) != NULL) {
printf("\nThe file before modification is:\n");

/* read characters */
while ((¢ = getc(filePtr)) != EOF) {
putchar(c);
putc(c == '\t' ?2 " '": c, tempFilePtr);
} /* end while */

A QOutline
\%

figl4 06.c (Part 1 of
2)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

rewind(tempFilePtr);
rewind(filePtr);
printf("\n\nThe file after modification is:\n");

/* read characters */

while ((¢ = getc(tempFilePtr)) != EOF) {
putchar(c);
putc(c, filePtr);

} /* end while */

} /¥ end if */

else { /* if temporary file could not be opened */
printf("unable to open temporary file\n");

} /* end else */

} /* end if */

else { /* if file could not be opened */
printf("uUnable to open %s\n", fileName);

} /* end else */

return 0; /* indicates successful termination */

} /* end main */

A

\'%

2)

QOutline

figl4 06.c (Part 2 of

This program changes tabs to spaces.
Enter a file to be modified: data.txt

The file before modification is:
0 1 2 3 4
5 6 7 8

The file after modification is:
012 3 14
56 7 89

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Outline
\%

Program Output

14.10 Signal Handling
 Signal

— Unexpected event, can terminate program

* Interrupts (<ctrl> c), illegal instructions, segmentation
violations, termination orders, floating-point exceptions
(division by zero, multiplying large floats)

* Function signal

— Traps unexpected events
— Header <signal.h>

— Recelves two arguments a signal number and a pointer to the
signal handling function

 Function raise

— Takes an integer signal number and creates a signal

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.10 Signal Handling

 Signals defined in signal.h

Signal Explanation

SIGABRT Abnormal termination of the program (such as a call
to abort).

SIGFPE An erroneous arithmetic operation, such as a divide
by zero or an operation resulting in overflow.

SIGILL Detection of an illegal instruction.

SIGINT Receipt of an interactive attention signal.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 /* Fig. 14.8: figl4_08.c

2 Using signal handling */ A Out"ne
3 #include <stdio.h> v

4 #include <signal.h> .

5 #include <std1ib.h> figl4_08.c (Part 1 of
6 #include <time.h> 3)

7

8 void signal_handler(int signalvalue); /* prototype */

< signal set to call function

1Y IS NG signal_handler when a signal

1A of type SIGINT occurs.

12 int i; /* counter */

13 int x; /* variable to hold random<alues between 1-50 */

14

15 signal(SIGINT, signal_handler);

16 srand(clock());

17

18 /* output numbers 1 to 100 */
19 for (i =1; 1 <= 100; d++) {

20 X =1+ rand() % 50; /* generate random number to raise SIGINT */
21

22 /* raise SIGINT when x is 25 */

23 if (x == 25) {

24 raise(SIGINT);

25 } /* end if */

26

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

printf("%4d", i);
/* output \n when i is a multiple of 10 */
if (1% 10=0) {
printf(“\n");
} /* end if */
} /* end for */

return 0; /* indicates successful termination ¥/

} /* end main */

/* handles signal */
void signal_handler(int signalvalue)

{

int response; /* user's response to signal (1 or 2) */

printf("%s%d¥%s\n%s",

"\nInterrupt signal (", signalvalue, ") received.",

"Do you wish to continue (1 =yesor 2 =no)? ");

scanf("%d", &response);

A QOutline
\%

figl4 08.c (Part 2 of
3)

T

User given option of terminating
program

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

51
52
53
54
55
56
57
58
5Y
60
61
62
63
64
65
66

/* check for invalid responses */

while (response != 1 & response != 2) {
printf("(1 =yes or 2 = no)? ");
scanf("%d", &response);

} /* end while */

/* determine if it is time to exit */
if (response == 1) {

/* call signal and pass it SIGINT a
signal (SIGINT, signal_handler);

} /* end if */

else {
exit(EXIT_SUCCESS);

} /* end else */

67 } /* end function signalHandler */

A QOutline
\%

figl4 08.c (Part 3 of
3)

Signal handler reinitialized by calling
signal again

ress of signalHandler */

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 2 3 4 5 6 7 8 9 10 “k
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 v
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93

Interrupt signal (2) received.

Do you wish to continue (1 = yes or 2 =no)? 1
94 95 96

Interrupt signal (2) received.

Do you wish to continue (1 = yes or 2 = no)? 2

QOutline

Program Output

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.11 Dynamic Memory Allocation with
callocand realloc

« Dynamic memory allocation
— Can create dynamic arrays

e calloc(nmembers, size)
— nmembers — number of elements
— Size — size of each element
— Returns a pointer to a dynamic array

e real loc(pointerToObject, newSize)
— pointerToObject — pointer to the object being reallocated
— newsSize — new size of the object
— Returns pointer to reallocated memory
— Returns NULL If cannot allocate space
— If newS1ze equals 0 then the object pointed to is freed
— If pointerToObject equals O then it acts like malloc

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.12 The Unconditional Branch: goto

 Unstructured programming
— Use when performance crucial
- break to exit loop instead of waiting until condition
becomes false
e goto statement
— Changes flow control to first statement after specified label
— Alabel is an identifier followed by a colon (i.e. start:)

— Quick escape from deeply nested loop
goto start;

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25
1

/* Fig. 14.9: figl4_09.c
Using goto */

A QOutline

#include <stdio.h> Notice how start: , end: and
goto are used

int mainQ

{

int count = 1; /* 1inj

start: /* label */
if (count > 10) {
goto end;

} /* end if */

printf("%d ", count);
count++;

goto start; /* goto start on line 9 */

end: /* Tlabel */
putchar('\n');

return 0; /* indicates successful termination */

} /* end main */
2 3 4 5 6 7 8 9 10

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

\'%

figl4 09.c

Program Output

