
©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Chapter 14 - Advanced C Topics

Outline
14.1 Introduction

14.2 Redirecting Input/Output on UNIX and DOS Systems

14.3 Variable-Length Argument Lists

14.4 Using Command-Line Arguments

14.5 Notes on Compiling Multiple-Source-File Programs

14.6 Program Termination with exit and atexit
14.7 The volatile Type Qualifier

14.8 Suffixes for Integer and Floating-Point Constants

14.9 More on Files

14.10 Signal Handling

14.11 Dynamic Memory Allocation with calloc and realloc
14.12 The Unconditional Branch: goto



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

• In this chapter, you will learn:

– To be able to redirect keyboard input to come from a file.

– To be able to redirect screen output to be placed in a file.

– To be able to write functions that use variable-length 

argument lists.

– To be able to process command-line arguments.

– To be able to assign specific types to numeric constants

– To be able to use temporary files.

– To be able to process unexpected events within a program.

– To be able to allocate memory dynamically for arrays.

– To be able to change the size of memory that was 

dynamically allocated previously.



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.1   Introduction

• Several advanced topics in this chapter

• Operating system specific

– Usually UNIX or DOS



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.2   Redirecting Input/Output on UNIX

and DOS Systems

• Standard I/O - keyboard and screen
– Redirect input and output

• Redirect symbol(<)
– Operating system feature, not a C feature

– UNIX and DOS

– $ or % represents command line

– Example:
$ sum < input

– Rather than inputting values by hand, read them from a file

• Pipe command(|)
– Output of one program becomes input of another

$ random | sum

– Output of random goes to sum



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.2   Redirecting Input/Output on UNIX

and DOS Systems

• Redirect output (>)

– Determines where output of a program goes

– Example:

$ random > out

• Output goes into out (erases previous contents)

• Append output (>>)

– Add output to end of file (preserve previous contents)

– Example:

$ random >> out

• Output is added onto the end of out



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.3   Variable-Length Argument Lists

• Functions with unspecified number of arguments

– Load <stdarg.h>

– Use ellipsis(...) at end of parameter list

– Need at least one defined parameter

– Example:

double myfunction ( int i, ... ); 

– The ellipsis is only used in the prototype of a function with a 

variable length argument list

– printf is an example of a function that can take multiple 

arguments

– The prototype of printf is defined as

int printf( const char* format, ... );



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.3   Variable-Length Argument Lists

Identifier Explanation 

va_list A type suitable for holding information needed by macros va_start, va_arg and va_end. To 

access the arguments in a variable-length argument list, an object of type va_list must be 

declared. 

va_start A macro that is invoked before the arguments of a variable-length argument list can be 

accessed. The macro initializes the object declared with va_list for use by the va_arg and 

va_end macros. 

va_arg A macro that expands to an expression of the value and type of the next argument in the 

variable-length argument list. Each invocation of va_arg modifies the object declared with 

va_list so that the object points to the next argument in the list. 

va_end A macro that facilitates a normal return from a function whose variable-length argument list 

was referred to by the va_start macro. 

Fig. 14.1 The type and the macros defined in header stdarg.h. 
 

 



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig14_02.c (Part 1 

of 2)

1    /* Fig. 14.2: fig14_02.c 

2       Using variable-length argument lists */ 

3    #include <stdio.h> 

4    #include <stdarg.h> 

5     

6    double average( int i, ... ); /* prototype */ 

7     

8    int main() 

9    {  

10      double w = 37.5; /* initialize w */ 

11      double x = 22.5; /* initialize x */ 

12      double y = 1.7;  /* initialize y */ 

13      double z = 10.2; /* initialize z */ 

14    

15      printf( "%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n", 

16              "w = ", w, "x = ", x, "y = ", y, "z = ", z ); 

17      printf( "%s%.3f\n%s%.3f\n%s%.3f\n", 

18              "The average of w and x is ", average( 2, w, x ), 

19              "The average of w, x, and y is ", average( 3, w, x, y ), 

20              "The average of w, x, y, and z is ",  

21              average( 4, w, x, y, z ) ); 

22    

23      return 0; /* indicates successful termination */ 

24    

25   } /* end main */ 

26    

 



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig14_02.c (Part 2 of 

2)

Program Outputw = 37.5
x = 22.5
y = 1.7
z = 10.2

The average of w and x is 30.000
The average of w, x, and y is 20.567
The average of w, x, y, and z is 17.975

27   /* calculate average */ 

28   double average( int i, ... ) 

29   {  

30      double total = 0; /* initialize total */ 

31      int j;            /* counter */ 

32      va_list ap;       /* for storing information needed by va_start */ 

33    

34      va_start( ap, i ); /* initialize ap for use in va_arg and va_end */ 

35    

36      /* process variable length argument list */ 

37      for ( j = 1; j <= i; j++ ) { 

38         total += va_arg( ap, double ); 

39      } /* end for */ 

40    

41      va_end( ap ); /* end the va_start */ 

42    

43      return total / i; /* calculate average */ 

44    

45   } /* end function average */ 

 



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.4   Using Command-Line Arguments

• Pass arguments to main on DOS or UNIX

– Define main as

int main( int argc, char *argv[] )

– int argc

• Number of arguments passed

– char *argv[]

• Array of strings

• Has names of arguments in order

– argv[ 0 ] is first argument

– Example:  $ mycopy input output

• argc: 3

• argv[ 0 ]: “mycopy"

• argv[ 1 ]: "input"

• argv[ 2 ]: "output"



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1    /* Fig. 14.3: fig14_03.c 

2       Using command-line arguments */ 

3    #include <stdio.h> 

4     

5    int main( int argc, char *argv[] ) 

6    {  

7       FILE *inFilePtr;  /* input file pointer */ 

8       FILE *outFilePtr; /* output file pointer */ 

9       int c;            /* define c to hold characters input by user */ 

10    

11      /* check number of command-line arguments */ 

12      if ( argc != 3 ) { 

13         printf( "Usage: copy infile outfile\n" ); 

14      } /* end if */ 

15      else { 

16    

17         /* if input file can be opened */ 

18         if ( ( inFilePtr = fopen( argv[ 1 ], "r" ) ) != NULL ) { 

19    

20            /* if output file can be opened */ 

21            if ( ( outFilePtr = fopen( argv[ 2 ], "w" ) ) != NULL ) { 

22    

23               /* read and output characters */ 

24               while ( ( c = fgetc( inFilePtr ) ) != EOF ) { 

25                  fputc( c, outFilePtr ); 

26               } /* end while */ 

27    

28            } /* end if */  

 

fig14_03.c (Part 1 

of 2)

Notice argc and 

argv[] in main

argv[1] is the second 

argument, and is being read.

argv[2] is the third 

argument, and is being 

written to.

Loop until End Of File. fgetc a character from 

inFilePtr and fputc it into outFilePtr.



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig14_03.c (Part 2 of 

2)

29            else { /* output file could not be opened */ 

30               printf( "File \"%s\" could not be opened\n", argv[ 2 ] );  

31            } /* end else */ 

32    

33         } /* end if */ 

34         else { /* input file could not be opened */ 

35            printf( "File \"%s\" could not be opened\n", argv[ 1 ] ); 

36         } /* end else */ 

37    

38      } /* end else */ 

39    

40      return 0; /* indicates successful termination */ 

41    

42   } /* end main */ 

 



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.5   Notes on Compiling Multiple-Source-

File Programs

• Programs with multiple source files

– Function definition must be in one file (cannot be split up)

– Global variables accessible to functions in same file

• Global variables must be defined in every file in which they 

are used

– Example:

• If integer flag is defined in one file

• To use it in another file you must include the statement

extern int flag;

– extern

• States that the variable is defined in another file

– Function prototypes can be used in other files without an 

extern statement

• Have a prototype in each file that uses the function



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.5   Notes on Compiling Multiple-Source-

File Programs

• Keyword static

– Specifies that variables can only be used in the file in which 

they are defined

• Programs with multiple source files 

– Tedious to compile everything if small changes have been 

made to only one file

– Can recompile only the changed files

– Procedure varies on system

• UNIX: make utility



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.6   Program Termination with exit and

atexit
• Function exit

– Forces a program to terminate

– Parameters – symbolic constants EXIT_SUCCESS or 
EXIT_FAILURE

– Returns an implementation-defined value

– Example:

exit( EXIT_SUCCESS );

• Function atexit
atexit( functionToRun );

– Registers functionToRun to execute upon successful program 

termination

• atexit itself does not terminate the program

– Register up to 32 functions (multiple atexit() statements)

• Functions called in reverse register order

– Called function cannot take arguments or return values



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig14_04.c (Part 1 of 

2)

1    /* Fig. 14.4: fig14_04.c 

2       Using the exit and atexit functions */ 

3    #include <stdio.h> 

4    #include <stdlib.h> 

5     

6    void print( void ); /* prototype */ 

7     

8    int main() 

9    {  

10      int answer; /* user's menu choice */ 

11    

12      atexit( print ); /* register function print */ 

13      printf( "Enter 1 to terminate program with function exit" 

14              "\nEnter 2 to terminate program normally\n" ); 

15      scanf( "%d", &answer ); 

16    

17      /* exit if answer is 1 */ 

18      if ( answer == 1 ) {  

19         printf( "\nTerminating program with function exit\n" ); 

20         exit( EXIT_SUCCESS ); 

21      } /* end if */ 

22    

23      printf( "\nTerminating program by reaching the end of main\n" ); 

24    

 



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig14_04.c (Part 2 of 

2)

Program Output
Enter 1 to terminate program with function exit

Enter 2 to terminate program normally

: 1

Terminating program with function exit

Executing function print at program termination

Program terminated

Enter 1 to terminate program with function exit

Enter 2 to terminate program normally

: 2

Terminating program by reaching the end of main

Executing function print at program termination

Program terminated

25      return 0; /* indicates successful termination */ 

26    

27   } /* end main */ 

28    

29   /* display message before termination */               

30   void print( void )                                     

31   {                                                       

32      printf( "Executing function print at program "        

33              "termination\nProgram terminated\n" );         

34   } /* end function print */                                  

 



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.7   The volatile Type Qualifier

• volatile qualifier 

– Variable may be altered outside program

– Variable not under control of program

– Variable cannot be optimized



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.8 Suffixes for Integer and Floating-Point 

Constants

• C provides suffixes for constants

– unsigned integer – u or U

– long integer – l or L

– unsigned long integer – ul, lu, UL or LU

– float – f or F

– long double – l or L

– Examples:

174u

467L

3451ul

– If integer constant is not suffixed type determined by first 

type capable of storing a value of that size (int, long int, 

unsigned long int)

– If floating point not suffixed of type double



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.9 More on Files

• C can process binary files
– Not all systems support binary files

• Files opened as text files if binary mode not supported

– Binary files should be used when rigorous speed, storage, 
and compatibility conditions demand it

– Otherwise, text files are preferred

• Inherent portability, can use standard tools to examine data

• Function tmpfile
– Opens a temporary file in mode "wb+"

• Some systems may process temporary files as text files

– Temporary file exists until closed with fclose or until 
program terminates

• Function rewind
– Positions file pointers to the beginning of the file



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.9 More on Files

• File open modes:

Mode Description 

rb Open a binary file for reading. 

wb Create a binary file for writing. If the file already exists, discard the current contents. 

ab Append; open or create a binary file for writing at end-of-file. 

rb+ Open a binary file for update (reading and writing). 

wb+ Create a binary file for update. If the file already exists, discard the current contents. 

ab+ Append; open or create a binary file for update; all writing is done at the end of the file 

 



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1    /* Fig. 14.6: fig14_06.c 

2       Using temporary files */ 

3    #include <stdio.h> 

4     

5    int main() 

6    { 

7       FILE *filePtr;       /* pointer to file being modified */ 

8       FILE *tempFilePtr;   /* temporary file pointer */ 

9       int c;               /* define c to hold characters input by user */ 

10      char fileName[ 30 ]; /* create char array */ 

11    

12      printf( "This program changes tabs to spaces.\n" 

13              "Enter a file to be modified: " ); 

14      scanf( "%29s", fileName ); 

15    

16      /* fopen opes the file */ 

17      if ( ( filePtr = fopen( fileName, "r+" ) ) != NULL ) { 

18    

19         /* create temporary file */ 

20         if ( ( tempFilePtr = tmpfile() ) != NULL ) { 

21            printf( "\nThe file before modification is:\n" ); 

22    

23            /* read characters */ 

24            while ( ( c = getc(filePtr) ) != EOF ) { 

25               putchar( c ); 

26               putc( c == '\t' ? ' ': c, tempFilePtr ); 

27            } /* end while */ 

28    

 

fig14_06.c (Part 1 of 

2)



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig14_06.c (Part 2 of 

2)

29            rewind( tempFilePtr );  

30            rewind( filePtr ); 

31            printf( "\n\nThe file after modification is:\n" ); 

32    

33            /* read characters */ 

34            while ( ( c = getc(tempFilePtr) ) != EOF ) { 

35               putchar( c ); 

36               putc( c, filePtr ); 

37            } /* end while */ 

38    

39         } /* end if */ 

40         else { /* if temporary file could not be opened */ 

41            printf( "Unable to open temporary file\n" ); 

42         } /* end else */ 

43    

44      } /* end if */   

45      else { /* if file could not be opened */ 

46         printf( "Unable to open %s\n", fileName ); 

47      } /* end else */ 

48    

49      return 0; /* indicates successful termination */ 

50    

51   } /* end main */ 

 



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

This program changes tabs to spaces.

Enter a file to be modified: data.txt

The file before modification is:

0       1       2       3       4

5       6       7       8       9

The file after modification is:

0 1 2 3 4

5 6 7 8 9 



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.10  Signal Handling

• Signal

– Unexpected event, can terminate program

• Interrupts (<ctrl> c), illegal instructions, segmentation 

violations, termination orders, floating-point exceptions 

(division by zero, multiplying large floats) 

• Function signal

– Traps unexpected events

– Header <signal.h>

– Receives two arguments a signal number and a pointer to the 

signal handling function

• Function raise

– Takes an integer signal number and creates a signal



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.10  Signal Handling

• Signals defined in signal.h
Signal Explanation 

SIGABRT Abnormal termination of the program (such as a call 

to abort). 

SIGFPE An erroneous arithmetic operation, such as a divide 

by zero or an operation resulting in overflow. 

SIGILL Detection of an illegal instruction. 

SIGINT Receipt of an interactive attention signal. 

SIGSEGV An invalid access to storage. 

SIGTERM A termination request sent to the program. 
 

 



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1    /* Fig. 14.8: fig14_08.c 

2       Using signal handling */ 

3    #include <stdio.h> 

4    #include <signal.h> 

5    #include <stdlib.h> 

6    #include <time.h> 

7     

8    void signal_handler( int signalValue ); /* prototype */ 

9     

10   int main() 

11   {  

12      int i; /* counter */ 

13      int x; /* variable to hold random values between 1-50 */ 

14     

15      signal( SIGINT, signal_handler ); 

16      srand( clock() ); 

17       

18      /* output numbers 1 to 100 */ 

19      for ( i = 1; i <= 100; i++ ) {  

20         x = 1 + rand() % 50; /* generate random number to raise SIGINT */ 

21          

22         /* raise SIGINT when x is 25 */ 

23         if ( x == 25 ) { 

24            raise( SIGINT );      

25         } /* end if */ 

26    

 

fig14_08.c (Part 1 of 

3)

signal set to call function 

signal_handler when a signal 

of type SIGINT occurs.



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27         printf( "%4d", i ); 

28          

29         /* output \n when i is a multiple of 10 */ 

30         if ( i % 10 == 0 ) { 

31            printf( "\n" ); 

32         } /* end if */ 

33    

34      } /* end for */ 

35    

36      return 0; /* indicates successful termination */ 

37    

38   } /* end main */ 

39    

40   /* handles signal */  

41   void signal_handler( int signalValue ) 

42   {  

43      int response; /* user's response to signal (1 or 2) */ 

44       

45      printf( "%s%d%s\n%s", 

46         "\nInterrupt signal ( ", signalValue, " ) received.", 

47         "Do you wish to continue ( 1 = yes or 2 = no )? " ); 

48       

49      scanf( "%d", &response ); 

50       

 

fig14_08.c (Part 2 of 

3)

User given option of terminating 

program



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

51      /* check for invalid responses */ 

52      while ( response != 1 && response != 2 ) {  

53         printf( "( 1 = yes or 2 = no )? " ); 

54         scanf( "%d", &response ); 

55      } /* end while */ 

56       

57      /* determine if it is time to exit */ 

58      if ( response == 1 ) { 

59    

60         /* call signal and pass it SIGINT and address of signalHandler */ 

61         signal( SIGINT, signal_handler );                                   

62      } /* end if */ 

63      else { 

64         exit( EXIT_SUCCESS ); 

65      } /* end else */ 

66     

67   } /* end function signalHandler */ 

 

Signal handler reinitialized by calling 

signal again

fig14_08.c (Part 3 of 

3)



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

1   2   3   4   5   6   7   8   9  10

11  12  13  14  15  16  17  18  19  20

21  22  23  24  25  26  27  28  29  30

31  32  33  34  35  36  37  38  39  40

41  42  43  44  45  46  47  48  49  50

51  52  53  54  55  56  57  58  59  60

61  62  63  64  65  66  67  68  69  70

71  72  73  74  75  76  77  78  79  80

81  82  83  84  85  86  87  88  89  90

91  92  93

Interrupt signal ( 2 ) received.

Do you wish to continue ( 1 = yes or 2 = no )? 1

94  95  96

Interrupt signal ( 2 ) received.

Do you wish to continue ( 1 = yes or 2 = no )? 2 



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.11 Dynamic Memory Allocation with

calloc and realloc
• Dynamic memory allocation

– Can create dynamic arrays

• calloc( nmembers, size )
– nmembers – number of elements

– size – size of each element

– Returns a pointer to a dynamic array

• realloc( pointerToObject, newSize )
– pointerToObject – pointer to the object being reallocated

– newSize – new size of the object

– Returns pointer to reallocated memory

– Returns NULL if cannot allocate space

– If newSize equals 0 then the object pointed to is freed

– If pointerToObject equals 0 then it acts like malloc



©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14.12   The Unconditional Branch: goto

• Unstructured programming

– Use when performance crucial

– break to exit loop instead of waiting until condition 

becomes false

• goto statement

– Changes flow control to first statement after specified label

– A label is an identifier followed by a colon (i.e. start:)

– Quick escape from deeply nested loop

goto start;



OutlineOutline

©  Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1    /* Fig. 14.9: fig14_09.c  

2       Using goto */ 

3    #include <stdio.h> 

4     

5    int main() 

6    {  

7       int count = 1; /* initialize count */ 

8     

9       start: /* label */ 

10    

11         if ( count > 10 ) { 

12            goto end; 

13         } /* end if */ 

14    

15         printf( "%d  ", count ); 

16         count++; 

17    

18         goto start; /* goto start on line 9 */ 

19    

20      end: /* label */ 

21         putchar( '\n' ); 

22    

23      return 0; /* indicates successful termination */ 

24    

25   } /* end main */ 

 

fig14_09.c

Program Output
1  2  3  4  5  6  7  8  9  10

Notice how start: , end: and 

goto are used


