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Objectives

* In this chapter, you will learn:

To be able to redirect keyboard input to come from a file.
To be able to redirect screen output to be placed in a file.

To be able to write functions that use variable-length
argument lists.

To be able to process command-line arguments.

To be able to assign specific types to numeric constants
To be able to use temporary files.

To be able to process unexpected events within a program.
To be able to allocate memory dynamically for arrays.

To be able to change the size of memory that was
dynamically allocated previously.
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14.1 Introduction

 Several advanced topics in this chapter

» QOperating system specific
— Usually UNIX or DOS
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14.2 Redirecting Input/Output on UNIX
and DOS Systems

 Standard I/O - keyboard and screen
— Redirect input and output

* Redirect symbol(<)
— Operating system feature, not a C feature
— UNIX and DOS
— $ or % represents command line

— Example:
$ sum < input

— Rather than inputting values by hand, read them from a file

* Pipe command(|)

— Output of one program becomes input of another
$ random | sum

— Output of random goes to sum
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14.2 Redirecting Input/Output on UNIX
and DOS Systems

 Redirect output (>)
— Determines where output of a program goes

— Example:
$ random > out

« QOutput goes into out (erases previous contents)

« Append output (>>)
— Add output to end of file (preserve previous contents)

— Example:
$ random >> out

« QOutput is added onto the end of out
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14.3 Variable-Length Argument Lists

 Functions with unspecified number of arguments

Load <stdarg.h>
Use ellipsis(. . .) at end of parameter list
Need at least one defined parameter

Example:
double myfunction ( int i, ... );

The ellipsis is only used in the prototype of a function with a
variable length argument list

printf is an example of a function that can take multiple
arguments

The prototype of printf is defined as
int printf( const char* format, ... );
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14.3 Variable-Length Argument Lists

Identifier Explanation

va_list A type suitable for holding information needed by macros va_start, va_arg and va_end. To
access the arguments in a variable-length argument list, an object of type va_11ist must be
declared.

va_start A macro that is invoked before the arguments of a variable-length argument list can be
accessed. The macro initializes the object declared with va_11ist for use by the va_arg and
va_end macros.

va_arg A macro that expands to an expression of the value and type of the next argument in the
variable-length argument list. Each invocation of va_arg modifies the object declared with
va_Tlist so that the object points to the next argument in the list.

va_end A macro that facilitates a normal return from a function whose variable-length argument list
was referred to by the va_start macro.

Fig. 14.1 The type and the macros defined in header stdarg. h.
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/* Fig. 14.2: figl4_02.c

Using variable-length argument lists */
#include <stdio.h>
#include <stdarg.h>

double average( int i, ... ); /* prototype */

int main()

{
double w = 37.5; /* initialize w */
double x = 22.5; /* initialize x */
double y = 1.7; /* initialize y */
double z = 10.2; /* initialize z */

printf( "%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n",
IIW = II’ w’ IIX = ll’ X’ I|y = II’ y’ IIZ =
printf( "%s%.3f\n%s%.3f\n%s%.3f\n",

"The average of w and x is

y Z )5

, average( 2, w, X ),

"The average of w, x, and y is ", average( 3, w, X, V¥ ),

"The average of w, x, y, and z is ",

average( 4, w, X, Yy, z ) );

return 0; /* indicates successful termination */

} /* end main */
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figld 02.c (Part 1
of 2)



27 /* calculate average */

28 double average( int i, ... )

29 {

30 double total = 0; /* initialize total */

31 int j; /* counter */

32 va_list ap; /* for storing information needed by va_start */
88

34 va_start( ap, i ); /* initialize ap for use 1in va_arg and va_end */
35

36 /¥ process variable length argument 1list */

37 for ( j=1; j<=1; j++ ) {

38 total += va_arg( ap, double );

39 } /* end for */

40

41 va_end(C ap ); /* end the va_start */

42

43 return total / i; /* calculate average */

44

45 } /* end function average */

N X =
I

The
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= 37.5

22.5
1.7

= 10.2

average of w and x is 30.000
average of w, x, and y is 20.567
average of w, x, y, and z is 17.975

A
v

figld 02.c (Part 2 of
2)
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14.4 Using Command-Line Arguments

« Pass arguments to main on DOS or UNIX

— Define main as
int main( int argc, char *argv[] )
- int argc
« Number of arguments passed
- char *argv[]
 Array of strings
« Has names of arguments in order
—argv[ 0 ] is firstargument
— Example: $ mycopy input output
e argc: 3
e argvl 0 ]: “mycopy"”
e argvl 1 ]: "input”

e argv[ 2 ]: "output”
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/* Fig. 14.3: figl4_03.c
Using command-Tine arguments */

#include <stdio.h>

Notice argc and
argv[] inmain

A QOutline

{
FILE *inFilePtr; /* input file pointer */

1

2

S

4

5 1dint main( int argc, char *argv[] )

6

7

8 FILE *outFilePtr; /* output file pointer */
9

\'%

figl4 03.c (Part 1
of 2)

argv[1] is the second
argument, and is being read.

argv[2] is the third
argument, and is being
written to.

Loop until End of File. fgetc a character from

int c; /* define c to hold characters input by user */
10
11 /* check number of command-1line arguments */
12 if Cargc '= 3 ) {
13 printf( "Usage: copy infile outfile\n" );
14 } /*¥ end if */
15 else {
16
17 /* if input file can be opened */
18 if C ( inFilePtr = fopen( argv[ 1 1, "r" ) ) != nNuLL ) {
19
20 /* if output file can be opened */
21 if ( ( outFilePtr = fopen(C argv[ 2 ], "w" ) ) != nuLL ) {
22
23 /* read and output characters */
24 while ( ( ¢ = fgetc(C inFilePtr ) ) != EOF ) {
25 fputc( c, outFilePtr );
26 } /* end while */
27
28 } /* end if */

inFilePtr and fputc it into outFilePtr.
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29
30
31
32
33
34
35
36
37
38
39
40
41
42

else { /* output file could not be opened */
printf( "File \"%s\" could not be opened\n", argv[ 2 ] );
} /* end else */

} /* end if */
else { /* input file could not be opened */
printf( "File \"%s\" could not be opened\n", argv[ 1 1] );
} /* end else */
} /* end else */

return 0; /* indicates successful termination */

} /* end main */

A

\'%
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14.5 Notes on Compiling Multiple-Source-
File Programs

» Programs with multiple source files
— Function definition must be in one file (cannot be split up)

— Global variables accessible to functions in same file

 Global variables must be defined in every file in which they
are used

— Example:
* |If integer f1ag is defined in one file

 To use it in another file you must include the statement
extern int flag;
- extern

 States that the variable is defined in another file

— Function prototypes can be used in other files without an
extern statement

« Have a prototype in each file that uses the function
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14.5 Notes on Compiling Multiple-Source-
File Programs

« Keyword static

— Specifies that variables can only be used in the file in which
they are defined

» Programs with multiple source files

— Tedious to compile everything if small changes have been
made to only one file

— Can recompile only the changed files

— Procedure varies on system
« UNIX: make utility

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.




14.6 Program Termination with exit and
atexit

e Functionexit
— [Forces a program to terminate

— Parameters — symbolic constants EXIT_SUCCESS or
EXIT_FAILURE

— Returns an implementation-defined value
— Example:
exit( EXIT_SUCCESS );

* Function atexit
atexit( functionToRun );
— Registers functionToRun to execute upon successful program
termination
« atexit itself does not terminate the program
— Register up to 32 functions (multiple atexit () statements)
 Functions called in reverse register order

— Called function cannot take arguments or return values
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/* Fig. 14.4: figl4_04.c

Using the exit and atexit functions */
#include <stdio.h>
#include <stdlib.h>

void print( void ); /* prototype */

int mainQ

{

int answer; /* user's menu choice */

atexit( print ); /* register function print */

printf( "Enter 1 to terminate program with function exit"
"\nEnter 2 to terminate program normally\n" );

scanf( "%d", &answer );

/¥ exit if answer is 1 */

if ( answer == 1 ) {
printf( "\nTerminating program with function exit\n" );
exit( EXIT_SUCCESS );

} /* end if */

printf( "\nTerminating program by reaching the end of main\n" );

A QOutline
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figl4 04.c (Part 1 of
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25 return 0; /* indicates successful termination */

26

27 } /* end main */

28

29 /* display message before termination */
30 void print( void )

31 {
32 printf( "Executing function print at program "
33 "termination\nProgram terminated\n" );

34 } /* end function print */

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1

Terminating program with function exit
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated
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14.7 The volatile Type Qualifier

« volatile qualifier
— Variable may be altered outside program
— Variable not under control of program
— Variable cannot be optimized
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14.8 Suffixes for Integer and Floating-Point
Constants

» C provides suffixes for constants
— unsigned integer —u or U
- longinteger — 1 or L
— unsigned long integer — ul, Tu, UL or LU
- float—forF
- long double—1orL

— Examples:
174u
467L
3451ul

— If integer constant is not suffixed type determined by first
type capable of storing a value of that size (int, Tong 1int,
unsigned Tong 1int)
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14.9 More on Files

« C can process binary files
— Not all systems support binary files
 Files opened as text files if binary mode not supported

— Binary files should be used when rigorous speed, storage,
and compatibility conditions demand it

— Otherwise, text files are preferred
* Inherent portability, can use standard tools to examine data

 Function tmpfile
— Opens a temporary file in mode "wb+"
« Some systems may process temporary files as text files

— Temporary file exists until closed with fclose or until
program terminates

 Function rewind

— Positions file pointers to the beginning of the file
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14.9 More on Files

 File open modes:

Mode Description

rb Open a binary file for reading.

wb Create a binary file for writing. If the file already exists, discard the current contents.
ab Append; open or create a binary file for writing at end-of-file.

rb+ Open a binary file for update (reading and writing).

wh-+ Create a binary file for update. If the file already exists, discard the current contents.
ab+ Append; open or create a binary file for update; all writing is done at the end of the file
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/* Fig. 14.6: figl4_06.c

Using temporary files */

#include <stdio.h>

int mainQ)

{

FILE *filePtr; /* pointer to file being modified */

FILE *tempFilePtr; /* temporary file pointer */

int c; /* define c to hold characters input by user */

char fileName[ 30 ]; /* create char array */

printf( "This program changes tabs to spaces.\n"
"Enter a file to be modified: " );
scanf( "%29s", fileName );

/* fopen opes the file */
if ( ( filePtr = fopen( fileName, "r+" ) ) I= NULL ) {

/* create temporary file */
if ( ( tempFilePtr = tmpfile() ) != NULL ) {
printf( "\nThe file before modification is:\n" );

/* read characters */
while ( ( ¢ = getc(filePtr) ) != EOF ) {
putchar( c );
putc( c == '\t' ?2 " '": c, tempFilePtr );
} /* end while */

A QOutline
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51
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rewind( tempFilePtr );
rewind( filePtr );
printf( "\n\nThe file after modification is:\n" );

/* read characters */

while ( ( ¢ = getc(tempFilePtr) ) != EOF ) {
putchar( c );
putc( c, filePtr );

} /* end while */

} /¥ end if */

else { /* if temporary file could not be opened */
printf( "unable to open temporary file\n" );

} /* end else */

} /* end if */

else { /* if file could not be opened */
printf( "uUnable to open %s\n", fileName );

} /* end else */

return 0; /* indicates successful termination */

} /* end main */

A
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This program changes tabs to spaces.
Enter a file to be modified: data.txt

The file before modification is:
0 1 2 3 4
5 6 7 8

The file after modification is:
012 3 14
56 7 89

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Outline
\%

Program Output




14.10 Signal Handling
 Signal

— Unexpected event, can terminate program

* Interrupts (<ctrl> c), illegal instructions, segmentation
violations, termination orders, floating-point exceptions
(division by zero, multiplying large floats)

* Function signal

— Traps unexpected events
— Header <signal.h>

— Recelves two arguments a signal number and a pointer to the
signal handling function

 Function raise

— Takes an integer signal number and creates a signal
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14.10 Signal Handling

 Signals defined in signal.h

Signal Explanation

SIGABRT Abnormal termination of the program (such as a call
to abort).

SIGFPE An erroneous arithmetic operation, such as a divide
by zero or an operation resulting in overflow.

SIGILL Detection of an illegal instruction.

SIGINT Receipt of an interactive attention signal.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.
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1 /* Fig. 14.8: figl4_08.c

2 Using signal handling */ A Out"ne
3 #include <stdio.h> v

4 #include <signal.h> .

5 #include <std1ib.h> figl4_08.c (Part 1 of
6 #include <time.h> 3)

7

8 void signal_handler( int signalvalue ); /* prototype */

< signal set to call function

1Y IS NG signal_handler when a signal

1A of type SIGINT occurs.

12 int i; /* counter */

13 int x; /* variable to hold random<alues between 1-50 */

14

15 signal( SIGINT, signal_handler );

16 srand( clock() );

17

18 /* output numbers 1 to 100 */
19 for (i =1; 1 <= 100; d++ ) {

20 X =1+ rand() % 50; /* generate random number to raise SIGINT */
21

22 /* raise SIGINT when x is 25 */

23 if ( x == 25) {

24 raise( SIGINT );

25 } /* end if */

26
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

printf( "%4d", i );
/* output \n when i is a multiple of 10 */
if (1% 10=0) {
printf( “\n" );
} /* end if */
} /* end for */

return 0; /* indicates successful termination ¥/

} /* end main */

/* handles signal */
void signal_handler( int signalvalue )

{

int response; /* user's response to signal (1 or 2) */

printf( "%s%d¥%s\n%s",

"\nInterrupt signal ( ", signalvalue, " ) received.",

"Do you wish to continue (1 =yesor 2 =no )? " );

scanf( "%d", &response );

A QOutline
\%

figl4 08.c (Part 2 of
3)

T

User given option of terminating
program
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52
53
54
55
56
57
58
5Y
60
61
62
63
64
65
66

/* check for invalid responses */

while ( response != 1 & response != 2 ) {
printf( "( 1 =yes or 2 = no )? " );
scanf( "%d", &response );

} /* end while */

/* determine if it is time to exit */
if ( response == 1 ) {

/* call signal and pass it SIGINT a
signal ( SIGINT, signal_handler );

} /* end if */

else {
exit( EXIT_SUCCESS );

} /* end else */

67 } /* end function signalHandler */

A QOutline
\%

figl4 08.c (Part 3 of
3)

Signal handler reinitialized by calling
signal again

ress of signalHandler */
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1 2 3 4 5 6 7 8 9 10 “k
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 v
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93

Interrupt signal ( 2 ) received.

Do you wish to continue ( 1 = yes or 2 =no )? 1
94 95 96

Interrupt signal ( 2 ) received.

Do you wish to continue ( 1 = yes or 2 = no )? 2

QOutline

Program Output
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14.11 Dynamic Memory Allocation with
callocand realloc

« Dynamic memory allocation
— Can create dynamic arrays

e calloc( nmembers, size )
— nmembers — number of elements
— Size — size of each element
— Returns a pointer to a dynamic array

e real loc( pointerToObject, newSize )
— pointerToObject — pointer to the object being reallocated
— newsSize — new size of the object
— Returns pointer to reallocated memory
— Returns NULL If cannot allocate space
— If newS1ze equals 0 then the object pointed to is freed
— If pointerToObject equals O then it acts like malloc
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14.12 The Unconditional Branch: goto

 Unstructured programming
— Use when performance crucial
- break to exit loop instead of waiting until condition
becomes false
e goto statement
— Changes flow control to first statement after specified label
— Alabel is an identifier followed by a colon (i.e. start:)

— Quick escape from deeply nested loop
goto start;
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/* Fig. 14.9: figl4_09.c
Using goto */

A QOutline

#include <stdio.h> Notice how start: , end: and
goto are used

int mainQ

{

int count = 1; /* 1inj

start: /* label */
if ( count > 10 ) {
goto end;

} /* end if */

printf( "%d ", count );
count++;

goto start; /* goto start on line 9 */

end: /* Tlabel */
putchar( '\n' );

return 0; /* indicates successful termination */

} /* end main */
2 3 4 5 6 7 8 9 10
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